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SECTION 1
INTRODUCTION

The Geddard Orbit Determination Program (GODP) described in this manual was
developed for the Special Projects Branch, Theoretical Division, Goddard Space Flight Center
by the Sperry Rand Systems Group.

The historical background to the present Program began with the development of a
prototype routine by Analytical Mechanics Associates to demonstrate the feasibility of a
minimum variance estimator (Kalman filter) applied to the updating of satellite orbits.
Subsequently, the prototype program was modified and extended by the Systems Group, under
contract to the Special Projects Branch, to accommodate the processing of real data. As
& consequence of these efforts, a single-precision orbit determination program was designed
using FORTRAN II and FAP. Identified as the Phase I Program, it has been employed to com-
pute orbits for the IMP, RELAY and TIROS satellites.

Using the same design features which characterize the Phase I Program, a double-
precision orbit determination program was developed by the Systems Group. This Phase II
Program is the one described in this manual. It is written entirely in FORTRAN IV and
offers many options both in its trajectory computation and statistical estimation modes.

One essential advance of the present Program over the Phase I version is the ability of the
former to obtain estimates of bilases in the dynamical and observational models. It is
capable, therefore, of updating geodetic and astrophysical parameters as well as of correct-
ing tracking station survey errors and instrument biases. The double-precision program is
also able to update trajectories during periods of thrust and to use measurements made on
board a satellite.

Data editing routines have been developed for rejecting data with unacceptable
formats, time-ordering data from various tracking systems, merging the data in proper time
sequence, inserting time corrections, and converting the data formats to a standard format
suitable to both Phase I and Phase II Programs. These data editing routines are subsidiary
to and separate from the orbit detemmination Programs.

The Goddard Orbit Determination Program was developed under Contract NAS5-35-9.
This Contract was monitored for the Theoretical Division by Mr. R.K. Squires and
Mr. D.S. Woolston, Special Projects Branch.

1-1/1-2



SECTION 2
PROGRAM DESCRIPTION

2.1  INTRODUCTION

Orbit determination entails the statistical estimation of orbital elements, or
equivalently, satellite position and velocity, from tracking data. In the usual situation,
these data consist of measurements of range, range-rate, and angles from ground-based
stations. The data are processed by an orbit determination program in which full use is
made of a priori information in the estimation process.

To carry out its functions, an orbit determination program requires two major
components; (1) a routine for orbit prediction or trajectory computation; (2) a routine for
statistical estimation. This section introduces these two components in terms of the con-
ténts of the Program, thereby providing an over-all view of the material to be described in
succeeding sections. Specifically, detailed discussions of trajectory computation are given
in Sections 3 and 4; the elements of statistical estimation are covered in Section 5.

2.2  TRAJECTORY COMPUTATION

Orbit prediction, or trajectory computation, is the process of calcularing the
position and velocity of a spacecraft at any time later than some initial time, given the
vehicle's position and velocity at the initial time. To accomplish this prediction, one
makes use of the laws of celestial mechanics as embodied in the differential equations of
motion. Forcing functions for these equations are obtained from a dynamic model which
accounts for the accelerations acting on the spacecraft. A reference frame is erected to
express the components of the various vector quantities, and the equations of motion are
numerically integrated, subject to the given initial conditions.

The coordinate system used in this Program is based upon the mean Earth's equator
and equinox obtaining at ot January 1 of the year subsequent to the initial time. Coordinate
directions of this frame are inertial with respect to the fixed stars; the center of origin
of the system, however, may be transferred from one central body to another, so that the
spacecraft motion is specified relative to a point mass which itself has a proper motion.
This reference frame is called the Base Date System.

Observations made from the Earth are necessarily in a system different from the
Base Date System; the actual coordinate frame is called the true system of date. The true

2-1
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system differs from the Base Date System because of the Earth's nutation and the precession
of the equinox. In going from one frame to the other, the true system of date is reduced
to the mean system of date by a nutation transformation. A vector expressed in the result-
ing mean system 1s then transformed to the Base Daute System by a precession matrix.

For ohservations made on the Moon, account must be taken of lunar libration. 1In
this instance, a transformation is made from a coordinate frame rigidly attached to the Moon
to the true system of date. Nutation and precession transformations then rotate the obser-
vation into the Base Date System.

All accelerations acting on the vehicl+ are specified in the Buse Date System.
The gravitational attractions of bodies in the solar system are functions only of position
with respect to the vehicle; consequently, the Program employs an ephemeris giving planetary
coordinates relative to the Sun and lunar coordinates relative to the Earth, all in a Base
Date System. A Base Date System is specified for overlapping two-year hlocks of data, the
Date corresponding to the middle of the two-year file. Specifying an initial time causes
the Program tu choose an ephemeris file having as its Base Date the beginning of the year
following the initial time. In this way, at least one full year of ephemeris information
is available before a change of reference system is necessary.

Another acceleration specified in the Base Date System without transformmation is
that arising from solar radiation pressure. Since this acceleration is a function of re-
lative position between the Sun and the vehicle, its direction is given in the proper frame
by manipulating information from the ephemeris.

Other accelerations, such as Earth oblateness effects and atmospheric drag must
he transformed through nutation and precession to the proper frame. Higher gravitational
terms arising from the Moon's field are subject to the additional transformation of libration.
Thrust accelerations, on the other hand, may be specified in an arbitrary coordinate frame.
If they are given in the Base Date System, no transformations are necessary, whereas if
they are described in any other frame, rotation matrices appropriate to the situation must
be used.

Spacecraft motion is always computed relative to some reference body: a planet;
the Moon; the Sun. Consequently, the equations of motion contain a term which accounts for
the acceleration of the reference body on the spacecraft. The remaining accelerations are
usually, but not always, much smaller than this primary acceleration and are therefore
called perturbations. In most cases, they can he regarded as giving rise to small disturb-
ances in the orbit deteimined by the reference body and the initial conditions. Two ex-
ceptions arise in the cases of motion thruugh a dense atmosphere, and the application of
high thrust to the vehicle. 1In both these instances, the perturbation acceleration may
equal or exceed the primary acceleration.

Reference hodies are changed during a trajectory calculation when the spacecraft
leaves the "region of influence" associated with a particular hody. Regions of influence
are computed for a body with respect to the object of which it is a satellite. Hence, each
planet has a region of influence defined relative to the Sun, and the Moon has a similar
region defined relative to the Earth. In transferring into or out of such a region, velo-
city as well as position with respect to the new reference body must be calculated.
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Since no analytic solution exists for the equations of motion, numerical methods
are employed to compute the components of position and velocity. In the Program, a choice
may be made between using straightforward integration and using Encke's method. The former
technique, called Cowell's method, is conceptually simple, but suffers from precision and
machine running time problems. Encke's method, although somewhat more complicated, gives
dividends in both precision and machine efficiency. In this procedure, the Keplerian orbit
arising from the reference body central force field is taken as a nominal trajectory. The
perturbation accelerations are integrated and the resulting position and velocity increments
are added to the Keplerian solutions. Naturally, Encke's method is most effective when the
perturbations are small. This Program employs an extension of the Encke procedure for powered
flight in which the central gravitational force and the thrust accelerations define the
nominal trajectory. Perturbations to this more comprehensive reference orbit are then inte-
grated to obtain the total trajectory.

Both ground-based and on-board observations can be computed in the Program. Such
ohservations may be corrupted with random noise of specified variance to give fictitious
data. These "data" find application in various types of systems studies. The Program also
generates acquisition information for tracking stations.

Corrections are provided in the Program for the refraction of an electromagnetic
signal by the troposphere or by the ionosphere. Adjustments are computed for errors in
elevation angle, range, and radial velocity; other angular corrections are calculated from
the adjustment in elevation angle.

2.3 STATISTICAL COMPUTATIONS

Orbit determination has come to mean, in modern usage, the aggregate of those
methods whereby initial estimates of a spacecraft's position and velocity are statistically
updated from observations. Updating need not be restricted to position and velocity, but
may also be applied to uncertainties in the dynamical and observational models. Uncertain-
ties in both models give rise to inaccuracies in the prediction of spacecraft motion, and
affect, as well, the confidence to be placed in the prediction.

To implement the estimation of the vehicle state, and to correct the constants of
the dynamical and observational mndels, the available data must be processed by some statis-
tical technique within the Program. Before reaching this point, however, the information
from the tracking stations is first subjected to a data editing routine external to the
Program. In this routine, the data are time-ordered, time-corrected, and data points which
have been labelled as bad at the tracking station are removed from the resulting data tape.
The Program can then process this tape and edit out any data point which falls outside a
designated statistical limit. A final tape is thereby produced which is loaded into the
Program as the raw material of orbit determmination.

The estimation procedure may be recursive or non-recursive, and may use various
criteria to define a "best estimate" of the quantities to be updated. Recurczive estimation
is typified by minimum variance, or Kalman, filtering in which data points are processed
successively in their natural time order. Non-recursive estimation, like least-squares,
processes "batches" of data taken over relatively long time arcs. The Program provides a
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choice between Baye's estimation (which includes least-squares) and minimum variance.
Baye's estimate may be made elther recursively or non-recursively.

All of the estimation procedures make use of a linearized state vector, the com-
ponents of which are the position and velocity deviations from a nominal trajectory, and the
uncertainties in the constants of the dynamical and observational models. The employment
of a linearized vector necessitates the calculation of three matrices: the state transition
matrix; the covariance matrix; the matrix of observation partial derivatives.

A state transition matrix relates the linearized state vector at one time to the
state vector at some other time. A covariance matrix contains as diagonal elements the
variances of the state vector components, whereas the off-diagonal elements are the covari-
ances among these same components. The matrix of observation partials establishes the deter-
ministic relationship between the linearized observation residuals and the state vector.

Each of these matrices 1s used in computing an optimal estimate of the state.

Recursive procedures give the optimal estimate at each data time. Non-recursive
estimation, on the other hand, updates the vehicle state at one point in the "batch" of
data; an optimal estimate at any other point is obtained by integrating the trajectory from
the updated state.

The Program does not use the conventional linearized position and velocity com-
ponents in the state vector. Rather, it uses a set of differential parameters for which the
statistical correction matrix can be computed over a longer time span than can the corre-
sponding matrix for the conventional vector. A closed-form point transformation has been
developed relating the conventional state vector and the parameter vector. The parameter
transition matrix is also available in closed form when computed for a Keplerian orbit.
Throughout this Program, it is assumed that the Keplerian transition matrix is a good approxi-
nation to the true transition matrix.

2.4  SCOPE OF THE MANUAL

The Analytical Manual is one of three manuals which have been written to describe
the Orbit Determination Program. The other two volumes are concerned with programming aspects
and user's information.

This volume gives the mathematical derivations behind important routines and indi-
;ates features which are unique in the Program. Section 3 covers the equations of motion,
integration techniques, the special treatment of powered flight trajectories, and the proce-
dure for reference body transfer. Section 4 deals with all the perturbations considered in
trajectory computation, including planetary attractions, planetary oblateness, atmospheric
drag, and radiation pressure. Statistical calculations are treated in Section 5, and Section
6 develops the computation of observables, the matrices of observation partial derivatives,
and certain corrections employed with the observations. Three appendices describe: the
coordinate systems used in the Program together with the complement of transformations em-
ployed; a special transformation used in powered flight computations; propagation corrections
made to raw data provided to the Program by tracking stations.




SECTION 3

TRAJECTORY DETERMINATION

3.1  GENERAL

The equations of motion for a space vehicle are second-order differential equations
which describe the accelerations arising from the forces acting on the vehicle. These forces
are generally classified as follows:

a. Gravitational, primary
b. Gravitational, harmonic
c. Thrust

d. Drag

e. Radiation pressure.

The simplest gravitational force field is that due to a single point mass. 1In this case, the
equations of motion are

R=-— (1)

where

the universal gravitational constant

M
G
M = mass of the vehicle
R

position of the vehicle with respect to the point mass
With initial conditions Ro and Ro. equation (1) defines a "two-body" or Keplerian orbit which
may be described in closed form in terms of its true anomaly or eccentric anomaly.

A more complicated gravitational field may be constructed by considering the forces
contributed by additional point masses. In this instance, the equations of motion become

'|i=.ik_+|’1 (2)
R3
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where the sum of the accelerations, Pl' caused by the other point masses is small compared
to the acceleration of the original mass. The P1 acceleration is given by

R.: - R
J
P1 = z 7y V] —_— (3)
J 3
i B, R

where

i = GM

§ where Mj is the mass of the jth body

R, . = vector from the vehicle to the jth body

Rj = vector from original mass to the jth body.

The form of equation (2) implies that the original point mass provides the major
portion of the vehicle’'s acceleration and that the remaining accelerations are perturbations.
It is customary to erect a reference frame, for the equations of motion, having the pre-
dominant contributor to the force field at the origin. Consequently, the original mass is
frequently called the reference body.

For a realistic model, the reference body cannot be considered as a point mass;
for trajectories close to this body, it will be necessary to compute accelerations arising
from harmonics in the body’s gravitational potential. The Earth’s potential, for example,
is usually expressed in terms of associated spherical harmonics, whereas the Moon's potential
is given by the moments of inertiu about its three major axes.

A homogeneous ponderable body, i.e., a homogeneous body having appreciable weight,
which is perfectly spherical in shape may be considered as a point mass for potential
calculations. Therefore, accelerations due to gravitational harmonics result from the
oblateness, i.e., deviation from purely spherical shape, of the associated body. Designating
these oblateness perturbations as P2, the equations of motion become

R= MR, P+ P, (4)

R3

Thrust accelerations, designated by Pq, may in fact be larger than the primary
gravitational acceleration of the reference body. In such cases, the thrust acceleration is
not considered a perturbation. A similar situation may exist for drag acceleration, P4.

The final perturbation considered here is the effect of radiation pressure on

space vehicles having a high ratio of surface area to mass. Radiation pressure may arise
from three sources:

a. Direct sunlight
b. Reflected sunlight

c. Planetary radiation
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In the Program, only the first source is considered; the vehicle acceleration from sunlight
is designated Ps. Since the vehicle is not always in full sunlight, but may be in the
umbra or penumbra of a planet, (figure 3.1-1), it is necessary to compute the vehicle’'s
position relative to the cones of shadowing. If the vehicle is in a penumbra, an illumina-
tion factor is computed which indicates the percentage of total sunlight available for
illuminating the vehicle.

Accounting for the primary gravitational field of the reference body and the five
types of perturbative accelerations, the equations of motion become

.- 5
R=-ﬂ+2 P (5)
RS 1=1

There are two basic methods by wnich the solution to equation (5) may be obtained,
Encke’ s method and Cowell’s method. 1If equation (5) were to be numerically integrated in a
straight-forward manner, the integration would be known as Cowell’s method. The simplicity
of this method is offset by the large accelerations which must be integrated. As a
consequence of the acceleration magnitudes, small time increments have to be used in the
integration, and machine roundoff erroraccumulates rapidly. Independent evaluations at many
companies and universities have shown that Cowell’s method requires more machine time (by a
factor of ten) than other perturbational schemes. Despite these drawbacks, Cowell’s integra-
tion is still widely used and is included in the Program to permit a direct comparison of
results with facilities employing this technique.

Historically, Encke’s method is older than Cowell’s, although the former is more
sophisticated. Cowell’s method requires a modern high-speed computer to be practical,
vhereas Encke’'s was developed for hand computation. In Encke’s method, it is assumed that
the perturbative accelerations, Pi' are small compared to the reference body acceleration.
Consequently, when neither the drag nor the thrust accelerations are very large, the
solution of equation (1) is a good approximation to the true orbit. Under these conditions,
it is only necessary to integrate the difference between the accelerations on the two-body
orbit and the total accelerations acting on the vehicle. The equations of motion then
become second-order differential equations describing the acceleration differences. Let

€ =R - Ry (6)

where RTB is the position of the vehicle in terms of the two-body orbit. Then,

- R Rypl 5
€= cpl——IJ]+ = P 1)
3 3 1
R o 1=1
TB

Equation (7) is integrated to obtain § and §. These quantities are then added to RTB and RTB'
respectively. to obtain the instantaneous position (R) and velocity (R) of the vehicle. The
quantity £ is commonly referred to as the "Encke" term.
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If the thrust or drag accelerations approach the reference body acceleration in
magnitude, a new reference trajectory must somehow be obtained if Encke’s method is to be
used. In this program, vehicle altitudes are limited to those at which atmospheric drag can
safely be treated as a perturbation. For thrust, however, a subroutine has been designed
which computes the trajectory arising from the reference body gravitational field and a
specified thrust schedule. Using this solution as the nominal trajectory, the equations of
motion now describe the acceleration difference between positions on this orbit and the actual
instantaneous vehicle positions. Let

£ =R - R, (8)

where RN is the position of the vehicle in terms of the nominal trajectory. Then,

R 5
- N
€= -p JE- — [+ = P (9)
; R Ryl =1

173

Detailed descriptions of the Program’s implementation of Encke’s and Cowell’s methods
are provided in paragraphs 3.2 and 3.3, respectively. The special case where the thrust
acceleration is too large to be treated as a perturbation is described in paragraph 3.4.

The method and criteria for selecting the reference body and transfering from one reference
hody to another is discussed in paragraph 3.5. . '

3.2 ENCKE'S METHOD

~

3.2.1 EQUATIONS OF MOTION. As described in paragraph 3.1, the basic equations for
Encke’ s method are as follows: s o -
When P3 can be considered as a perturbation,

R=Rep * ¢ (1)
and
- [-R Rrg 5
€ = -l —-— 1+ 3 P (2)

i
1

3 3
R i
[** 5

When P3 is too large to be treated as a perturbation,

R=Ry + ¢ (3)
and
-, R RN 5
g:_# P O (4)
R RG3 | 1=1 !
143
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The determination of position and velocity of the vehicle, and RT , in a two-
body orbit, is described in paragraph 3.2.2. The determination of the powered ?light
nominal trajectory vectors, RN and RN' is discussed in paragraph 3.4.

Paragraph 3.2.3 discusses the integration scheme used by the Program to implement
equations (1) and (2) or (3) and (4).

The use of a reference orbit in Encke’s method assumes that the perturbations are
kept small. Therefore, the size of the Encke term § (or £') must be monitored. When the
magnitude of this term becomes too large, a new reference orbit is computed. The process of
computing the new reference orbit is commonly referred to as "rectification”. In the Program,
the following rectification criteria are employed:

= <¢, (5)
Reg
and
_é__ < e, (6)
Rpg

NOTE: Equations (5) and (6) apply when P3 is small. When P3
is large, substitute &' for £ and Ry for Rqg in the equations.

3.2.2 DETERMINATION OF TWO-BODY ORBIT VECTORS. The position and velocity, RTB
and kTB' respectively, of the vehicle in a Kepler orbit can be written in terms of the
initial position and velocity, Ry, and Ry, . respectively, as follows:

0 o]

Ryg = f RTBO toe RTBO (1)

and

Reg = £ Ryg *+ & Rpg_ (2)
where f and g are explicit functions of the differential eccentric anomaly of the Kepler
orbit. Equations (1) and (2) are solved, using Herrick’s method as summarized in the follow-
%ng analysis, to yield the RTB and ﬁTB at any instant on the same two-body orbit as.RTBO and
RTBO‘ Herrick’s method first determines f, f, g, and g, and then computes Ryg and Rrg

from equations (1) and (2). According to Herrick,

f=1 - (3)




where

a
"
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0= Y]
Ju
- -lus
b= (5)
T8,
i = c
| S - —
ra ()
G(t-t°)=n“°x+d°c+cou (M
B 2 4 ] q
. 2o X, (8)
[ 21 4!a @122  grad B
B x2 x4 x¢ 7]
x' _1._- + - - + ... (9)
[ 31 31a  41q2 g3 _
_ .. u
=X .= (10)
.8
A=Ryy +d, 5+, C (11)
. et -]
. - Rrs, " Rrp, )
o ~ (12)
0o
Ny
. * 2
'Tlo 8o
e, = " -1 (13)
reciprocal of semi major axis of Kepler orbit (14)
od = Res, © Rpp, (15)

3-7
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X = Herrick's variable, allinear function of differential eccentric anomaly -

= time corresponding to RTB and RTB

ot
|

t_ = time corresponding to RTBO and RTBO

i = universal gravitation constant

Solution of equations (3) through (6) requires the determination of X. Initially, a first
approximation of X is made. Then a Newton-Raphson iterative process is used on equations
(7)., (8), and (9) to yield a more accurate éstimate of X. :

Having obtained a satisfactory estimate of X, equations (3) through (6) are solved
using equations (7) through (15). The computed yalues of ‘f, f, g, and g are thenh substituted
into equations (1) and (2) to determine R and RTB The functions U and C (equations (8)
and (9)) are infinite series expansions. Since the . argument xz/a could under given
conditions become very large, a great many terms would have to be employed to limit the
truncation error. However, the use of many terms results in an ‘increased acéumulation of -
machine roundoff error. A shifting epoch concept is used to cope with this problem To®
calculate Ry, and RTB at time t; where t; - t, is large, select an intermediate time 'ty such
that tj > ty > t,. The epoch is shifted by employing

= +
Rrp, = f3 Ryg .+ 8y Ryg .
. . . . (16)
RTBi =1y RTBO t gy RTBOE
Then,
Res, = fiy Ryp, * 845 Rop,
: : Lo amn
R -—

8,  f1y Reg, * €15 Reg,
sy careful selection of tj - t;, the argument xzij/a may be kept small.

3.2.3 INTEGRATION TECHN|QUE

3.2.3.1 Introduction. Equation (4) of paragraph 3.2.1 is integrated numerically by
the Program. The numerical integration process is divided into two stages: a starting’
procedure and a long-term procedure. (Most long term numerical integration prOcedures
require knowledge of previous data points. Thus, the starting procedure is needed to
provide the initial data points for the long-term numerical procedure ) h

The long-term numerical integration procedure presently in use in the ITEM and
MINIVAR programs is an Adams sixth-order predictor method (without corrector) for second-
order differential equations It was desired, however. to test a broader class of procedures
before deciding on one for use as the long-term numerical integration procedure to be used
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in the Program. Accordingly, a program was writtes to test predictor, predictor-corrector,
and iterated predictor-correctsr, i.s., repested application of correctors, technigues of
various orders of approximation and with or without modifiers.

The following results were obtained:

. uitimfnr‘o rmuimﬁ-mm. There is thérefore mo
reason to use them.

b. As time interval increases, there is more tendency for the solutiom to become
unstable. Error increases with a large power of the time interval.

c. As the degres of the approximating polynomial increases, a decrease in stability
is noted. Error decreases shout 3:1 for umit increassé in degree of the approxi-
mating polynomial.

d. Predictor-only metheds (degree and time interval held fixed) are sbemt 30:1
less accurate than predictor-corrector methods, 1.¢., ome application of the
corrector removes 97% of the error in the predictor. A second iteration of
the corrector does not reduce the error, but does iwprove stability at the
expense of a 2:1 increase in rumming time. Yhe incresse in rumning time is
intolerable; therefore, a predictor-corrector method will be wsed with no
iterstion of the corrector.

e. FEither a fifth or sixth degree spproximating polynomial yields e good
compromise between accuracy and stability.

The final choice of a long-ters integrating procedure isvolves consideratioms other
than only accuracy and stability: ' '

8. The ease of tramsforming the output of the starting procedurs to the form of
input starting data needed by the long-term procedure.

b. whether the long-term procedure can easily accommodate a change in the time
interval.

C. Whether the long term procedure can easily interpolate to find cosditions at
an intermediate time at which data are desired.

There are at least three forms in which the Adams long-term pred_ictor-eorrector
formulas can be written. The omly differsnce is in mathematical form; therefors, the
accuracy and stability are the same for sll three.

The first form is the conventional ome in terms of the sucoessive backward
differences; this is the form im which the ITEM program was origimally sritten. The second
is in terms of the successive values of the function, as in the preseat ITEM program. The
third is due to Nordsieck and uses the successive higher derivatives of the approximating
polynomial. Rach of the three forms has certain advantages and certain disadvantages which
will be discussed now.

The backward difference form is fairly easy to start but interpolation is some-
what difficult, and it is virtually impessible to change intervals except hy use of the
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starting procedure. The successive value form of the method is trivial to start up, but
interpolation involves the Lagrangian interpolation formulas, and changing intervals is, again,
almost impossible. The inability to change intervals immediately after starting causes, as

in the present ITEM program, a situation where the starting solution is called 28 times, but
used only 7 times.

The Nordsieck method is fairly difficult to start, but very awenable to arbitrary
changes of time intervals and to interpolation to intermediate points. Five points are all
that are needed to start after a change in time interval (of about 4:1).

Due to its versatility, the Nordsieck method of degree 5 (called m = 6 by Nordseick)
without iteration and without choice of interval is used in the Program. Paragraph 3.2.3.2
summarizes the Nordsieck method as applied in the Program. Paragraph 3.2.3.3 describes the
starting procedure selected for the Progrem. Parsgraph 3.2.3.4 describes the transformation
of the starting values to the form required by the Nordsieck method.

3.2.3.2 Nordsieck Method. The Nordsieck method of long-term numerical integration
(reference 1) is used to solve a system of equations of the form

dy1
—— = f (X,¥1,Y0s oo Al
ax (X,¥,,54 ) )
where
i =1,2,3 .....
Equations (1) are often shortened to
dy _
— = f (x, V) (2)
dx

When the solution to equation (2) is approximated by a polynomial of degree five, the
predictor is given by

i h " h2 "t
Y(xg + ) = y(x5) + b [#’(xo) tor Y (x,) tor Y (Xg)

(Xg) (3)

3 h4 h5
+ " + nar oy +
TV () P YR

neun

where

h is the integration step size (interval)

X, is the value of x at last integration
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y( ) is the value of y at ( ) value of x

primes denote derivatives with respect to x

Let
£(x,) = y'(xy) (4)
- h ”n

a(Xy) S— ¥y (x4) (5)

2!

hz
b(xy) = — 3" (x4) (6)

31

- hs "

c(xy) = ;T'J (x4) (T

ht
d(xo) = e y”"l (xo) (8)

5!

h5
e(xo) = — ynun (xo) (9)

6!

Nordsieck’s corrector is given by equation (10):
Corrector = K;h [f(xo + h) - fP] (10)
where
Kl is a constant (0.315591931)
f(xo + h) is the value of f(x,y) computed at x = X, +h, y (x, t h)
P is a predicted value for f(x,y) at x = X, + h, and is given by

P = f(xy) + 2a(x,) + 3b(xy) + 4c(x,) + 5d(x,) + 6e(xy) (11)

Hence, from equations (3) through (11), the value of y at x = x, + h is given by
Y(x, * h) Ty(x;) th [?(xo) +a(x)) * b(xy)) te(xy) *dxy) te(x) K (f(xo 4+ h) - fP{]

(12)
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The values of the successive higher derivatives (a (x), b (x), ¢ (x), d (x), e (x)) at
x B x, + h are given in terms of their values at x = X, by

a(x, +h) = a(xy) + 3b(x)) + 6c(xy) + 10d(x,) + 15e (x,) + Kz[f(x0 +h) - fﬁ] (13)

b(x, + h) = b(xy) + 4c(x)) + 10d(x)) + 20e(x ) + K3[:f(xo +h) - fP:] (14)
c(x, + h) = c(x;) + 5d(x;) + 15e(x,) + K4[:f(x0 +h) - ff] (15)
d(x, + h) = d(x;) + 6e(x,) + Ks[:f(xo +h) - ff] (16)

e(x, +h) = e(x,) + Ks[:f(x0 +h) - fé] (1

where

K2 = 1.141666667

K = 0.6250

K4 = 0.177083333
Kgs = 0.0250

Ke = 0.0013888889

Successive applications of equations (12) through (17) are used to provide a
solution to equations (1).

The integration interval, h, is readily changed, the change being accomplished by
using new values of a(x), b(x), c(x), d(x), and e(x). These new values are obtained from
the following equations:

hn
B = — (18)

h0
a,(x) = Ba_(x) (19)
b,(x) = B2b(x) (20)
cp(x) = Bc,(x) (21
d,(x) = B%d (x) (22)
e, (x) = B3¢, (x) (23)
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where the subscripts n and o stand for new and old, respectively.

Interpolation between computed solutions for y is also easily accomplished. Let

a = (xy = xp)h (24)
wvhere
Xy = value of x at which the value of y is desired
X, = value of x at which y was computed
Then,

¥(xy) T y(x;) +h [f(xl) +aa(x)) +a2b(x)) + ade(x)) + atd(x)) + a5e(xl):] (25)

In the Encke method, the Nordsieck method is used to integrate the differential
equations of the Encke term. For this integration, y of equation (3) represents f} y
represents E , and x represents time, t.

3.2.3.3 Starting Method. The Nordsieck method (paragraph 3.2.3.2) is used to continue
the solution of the Encke differential equations, once a starting procedure generates the
numerical solution at enough points to evaluate the successive higher derivatives of the
approximating polynomial at the start of the Nordsieck method.

Nordsieck’s method may be used in a self-starting mode. When it is used that way,
1t assumes that there is no discontinuity in the solution for five time steps. Since the
minimum variance technique introduces a rectification (discontinuity) at each data point,
und many data points may occur in five time steps, the condition for continuity will not in
zeneral be satisfied.

Most of the starting procedures involve analytic differentiation of the Encke terms.
This is not feasible.

There remains the Runge-Kutta procedure which is self-starting and has been used
successfully previously. The Program uses the Gill modification of Runge-Kutta (reference
2}, for the starting procedure, because it introduces some simplicity and error reduction.
The differences between Gill and Runge-Kutta are minor, and do not require a new substantia-
ti1on of its use as a starting procedure.

Fach entry into the Runge-Kutta-Gill (RKG) method yields a pair of values for y(t)
and i(t). The RKG method develops the values of y(t) and i(t) in a 4-step process by
dividing the integration interval, h, by four. The following equations summarize the
development of y(t) for a given entry into the RKG method:

YOt); T ¥ty oy thay (F(t)y ) - by oayy) (1)
and

Qj = qj_l + 3 {aj [&(t)j_l - bj qj-l]} - C_] y(t)j-l (2)
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where

j = the RKG step number (varies from 1 through 4)

aj. bj,

and cj are constants

The values of ir(t)j_1 are determined external to the RKG method; they are computed by summing
the perturbation accelerations at the corresponding time.

The Runge-Kutta-Gill (RKG) procedure is entered five times. The values of a(t),
b(t), c(t), d(t), and e(t) are computed by fitting a polynomial to the six sequential points
corresponding to the RKG data plus the initial estimate used in the RKG method. The equations
for this fitting are given in paragraph 3.2.3.4.

3.2.3.4 Transformation of RKG Data Into Form Suitable for Nordsieck Method.
The starting procedure yields the solutions of the differential equations and their rates
of change at six successive times. It is necessary to transform these datea into the form
required by the Nordsieck long-term numerical integration procedure.

For each first-order differential equation, the Nordsieck method requires the
following five higher derivatives evaluated at t = to:

_h ¥y (ty)
B(te) =~y
_h2Y (t)
P(te) = T
h3 .l&. (t )
c(t,) = T_° (1)
h4 28000 t )
ate) = ysl e
h5 EIINTY S (t )
°(to) = 6! °

The RKG starting method provides data for y(t) and y(t) at the six time intervals
up to and including ty i.e., RKG provides:

¥Y(ty) ¥ (ty)

y(ty, - h) y(t, - h)
y(t, - 2h) ¥ty - 2h)
y(t, - 3h) y(t, - 3h)
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¥(t, - 4h) ¥(ty, - 4h)

y(ty, - 5h) ¥(ty, - 5h)

The required values for a(ty)), b(ty), c(t,), d(t,), and e(t;) will be found by using Lagrange's
Interpolation Formila to fit a power series of degree five to the y(t) data provided by the

RKG method. The power series will then be successively differentiated to obtain the

data. Let

and let primes denote derivatives with respect to x. Therefore,

¥y (t) = hy (t)
Y'(t) = h¥y (t)
Y' (t)y =03 Y (t)

Y (t) = ht ¥ (t)
¥ty = h37Y7 ()

YUty = n8 Y (b

From Lagrange’s Interpolation Formula,

5
y(x) = X Fi(x)yy
170

where y(x) is the desired power series

Fo (X)

Fy(X)

Fgp(X)

Fgq(x)

P (x)

Fy (X)

il

(x+1) (x+2) (x*+3) (x+4) (x15)
120
-x(x+2) (x+3) (x1t4) (x+5)
24

x (x+1) (x+3) (x+4) (xt5)

12

-x(x+1)(x+2) (x+4) (x+5)
12

x(xt1) (x+2) (x+3) (x+5)
24

-x(x+1)(x+2) (x+3) (x+4)
120

required

(2)

(3)

(4)

(5)

(6)

1)

(8)

(9)

(10)
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yy are the values determined by the RKG method. Multiplying out the factors in equations

(5) through (10) yields

x5 + 15 x% + 85 x3 + 225 x2 + 274 x + 120

F (x) = S
o 120

- (x5 + 14 xt + 71 x3 + 154 x2 + 120x)

F.(x) =
1 24
PL(x) = x3 + 13 x* + 59 x3 + 107 x2 + 60x
x) =
2 12
Foxy = o (x3 + 12 x* + 49 x3 + 78 x2 + 40x)
3 12
e (xy = x3 + 11 x* + 41 x3 + 6 x%2 + 30x
4 24
P ox) = o (x5 + 10 x* + 35 x3 + 50 x2 + 24x)
5 120
From equations (1) and (3),
]
_Y (0)
t -
8 (%) 2!
"
Yy (0)
b t T —
o) 3!
X
Yy (0)
c(t ) = ———0
° 4!
nn
y (0)
d(t S o—e—————
0) 5!
nnt
_y (0)
®(to) 6!

Successively differentiating equation (4) with respect to x,

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(using equations (12)

through (16)), setting x = 0, and substituting into equations (17) yields the following in

matrix notation;
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- -~ - -
2a(t,) [-24 150 -400 600 -600 274 | [3(t, - sh)
3b(t,) -50 305 -780 1070 -770 225 Y(ty - 4h)
d4c(ty) . =35 205 -490 590 -355 85 J(ty, - 3h)
120 . (18)
5d(t,) -10 55 =120 130 - 70 15 y(t, - 2h)
ge(t,) -1 5-10 10- 5 1 Y(ty - h)
| ] B 3 _i(to) B
or
(a(t,) ] [-144 900 -2400 3600 -3600 1644 | [y(t, - 5h)]
b(t,) -200 1220 -3120 4280 -3080 900 y(t, - 4h)
c(ty) . -105 615 -1470 1770 -1065 255 y(t, - 3h)
= . . 19
1440 . a
d(ty) - 24 132 - 288 312 - 168 36 Y(ty - 2h)
e(ty) - 2 10- 20 20- 10 2 Y(ty = h)
i i i ¥(ty)

3.3 COWELL'S METHQD

As described in paragraph 3.1, the general equations of motion of a space vehicle
are

. 5
R:‘A;+ zpi.
i=1

In Cowell’s method, these equations are integrated, using numerical techniques,
to obtain the instantaneous position and velocity of the vehicle. The Program performs the
integration using the same techniques as it does for the Encke method. The RKG starting
procedure (paragraph 3.2.3.3) provides the initial data, and the Nordseick method (paragraph
3.2.3.2) is used as the long-term integration procedure. To make the accuracy of the results
of the two methods compatible, the Cowell’'s method of integration is performed completely in
double precision.

3-17/3-18
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3.4 POWERED FLIGHT

3.4.1 INTRODUCTiON. For powered flight, the dynamic model of the vehicle's trajectory
includes the thrust acceleration components as well as the accelerations arising from gravi-
tation, drag, and radiation pressure. In the following development, the thrust acceleration
components are &.-sumed available in the form of a polynomial expansion with time as the vari-
able. It is further assumed that: (a) no guidance loop is included in the analysis, so
that thrust is independent of the vehicle state; (b) the vehicle has sufficient altitude so
that drag forces may be treated as small perturbationms.

During powered flight, the equations of motion are

ﬁ='R‘:R+P1+Pz+Pa+P4+P5 (1)

in which

R = position of vehicle with respect to the central body

Pl = planetary perturbation accelerations

P, = oblateness accelerations

P, = thrust acceleration

P4 = atmospheric drag acceleration

P5 = radiation pressure acceleration.

in most computations involving powered flight, P1 and P5 may be neglected. The equations
then become

. -uR
R=—+Py+ (P +P (2)
R

The computational adventages of Encke’s method (paragraph 3.2) may be extended to
trajectories involving large thrust forces if a suitable nominal trajectory can be found.
For the problem analyzed here, the nominal orbit is computed from

R=1FR,

P (3)
R3 2

where P3 is expressed as a polynomial expansion in time, i.e.,

k
P,= 5 o, 7! (4)
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where

o, Ta, Xt/ Yty 2 (5)

and X, Sﬂ Z are the unit vectors of the coordinate system in which the thrust acceleration 1is
computed.

Paragraph 3.4.2 develops a power series for the nominal trajectory described by
equation (3). The nominal trajectory is computed in double precision whereas the integra-
tions of the Encke accelerations, €', are carried out in single precision. The summation of
the nominal trajectory components and the Encke ¢omponents are performed in double precision.
To obtain double-precision expansions of RN and RN which hold over the same time interval for
which the thrust acceleration polynomial is valid would, in general, require a large number
of terms in the RN and RN‘power series. In order to overcome this difficulty and to maintain
high precision in the computations, the power series for RN and RN are transformed to shifted
Chebyshev polynomial expansions. The latter expansions are more accurate for a given number
of terms. (Refer to Appendix B of this manual.) Paragraph 3.4.3 develops this
transformation.

Paragraph 3.4.4 develops a power series formulation for the thrust acceleration
(equation (4)).

The analysis of paragraph 3.4.2 applies to the "forward integration, " i.e., forward
in time, of -the equations of motion of a vehicle in powered flight. It may be necessary for
the Program to integrate backwards in time, over an interval during which the vehicle was in
powered flight., Paragraph 3.4.5 describes the computations for the case of backwards
integration.

3.4.2 TRAJECTORY DETERMINATION. Solutions to equation (3) of paragraph 3.4.1 may
be given in terms of a power series; thus, the state vector of the nominal trajectory may be
written as

H
™M
(7]
4

%

Ry (1)

and

RN

S 181 +(1-1) (2)
i

Recursion relations will be developed giving S1 in terms of oi.(equatlons (4) and (5) of
paragraph 3.4.1) and the vehicle’s initial conditions, Ro and Ro' Having the nominal tra-
jectory given by equations (1) and (2), the Encke equations of motion are obtained by sub-
tracting equation (3) of paragraph 3.4.1 from equation (2) of paragraph 3.4.1:

C o w R Ry
€' = R- RN = epf— - —| + (P2 + P4). (3)

3 3

R RN

3-20
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Sclution of equation (3) with the initial conditions €' = 0, é' = 0 leads to the calculation
ot vehicle position and velocity:

=
1

! RN + g
(4)

Ry * €'

=
f

Simple recursion formulas may be developed for the S1 coefficients by considering
the expansion of equation (1):

[4 0]
- i
xy T 3 a, 7
i=0
w
yy = % b, 7! (5
i=0
[+ 6]
ZN = Z C1 'Tl
i=0
wiere x.. y,. and z, are the magnitudes of the X, Y Z components of RN and
Si=a1;+b17+ciz (6"
ot
[e 6]
i - 2 - 2 2 2
5017 Ry xN+yN t ozy‘, (7
i=0
nd
[¢ o}
2 dj 71 fe RN'3 = (XN2 + yN2 + ZN2)‘3/2 (8)
i=0

The coefficients of equation (7) are obtained by definition from equation (5):

i
=2 (88, | * byby 4 tocyey
i=o0

D ) (9)
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To evaluate the coefficients of equation (8), let

p
zz(RNZ).

Taking the natural logarithm of both sides,

pln(RNZ) = 1n(z)

Differentiating with respect to 7,

t 2
(Ry?)

p

2
Ry

p(RyDz =

Setting p = -3/2, performing the
equation (12) yields

i

-1
d, = > D,d
i j~i-3
1Do j=1
= -3/2
do (D,)
Differentiating equations (5) twice:
@
XN = S i -1 ay
i=0
@
Yn 2 il -1 by
i=0
[s 8}
zy = 2 i1 - 1) ¢y
i=0

E

z

(10)
(11)
(12)
2
RN
indicated differentiation, and equating coefficients in

— ¢ {} (13)
(14)

7(1-2)
r(1-2) (15)

F(1-2)

Let the thrust acceleration polynomial of equation (4) of paragraph 3.4.1 be developed in

components so that
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k
(Py)y = 3 a, 7!
i=0
k
(Py), = Z By 7! (16)
1=0
. 1
1=0

where a,, ﬁﬁ, 7 are the coefficients defined in equation (5) of paragraph 3.4.1.

Substituting equations (5), (8)., (15), and (16) into equation (3) of paragraph
3.4.1, and equating coefficients of 1ike powers, the recursion formulae for the Si coeffi-
cients are obtained:

3 = X, by = ¥, €y = %o
. an
a; T x4 b1 . C; T 2z,
a =1 a; - u 2 a.d
1 i 1 h
by,, =S————— | B, -p I b,d (18)
i+2 (i*l)(i+2) i j=0 k) 1-j
1 i 1 ]
c = v, - 35 cdy.
142 e ey | 71T H L ST
i =0, 1, 2

NOTE: In equations (17) the subscript “0" indicates initial
conditions.

With these coefficients, positions on the reference orbit are obtained from
equations (5); velocity components op the orbit are given by the first derivatives of Xy

Ine and zy:
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Q
> iag r(1-1)
i=0

¢4}

> tb, 7U-D (19)
1=0

1"

i
M

éN = icy -1

i=0

3.4.3 EXPANSION OF R“ AND kN IN SHIFTED CHEBYSHEY POLYNOMIALS.

Let the thrust
acceleration polynomials of equation (4) of paragraph 3.4.1 be valid in the range 0 thjiTqu
Over this span, the normalized time variable is

T

t = . (1)
TMAX

For shifted Chebyshev polynomials, the normalized time variable is

(2)
2

and the thrust acceleration as a function of t’ is given by

L O A DU )
Bt S 7 P KT (B F KTy (b)) L KT () (3)
Calculation of the Kr given the power series coefficients of f(t’') has been described in
Appendix B.

The pertinent equations, however, are summarized here in a consistent notation.
Rearranging equations (5) of paragraph 3.4.2 in terms of the normalized variable t:

® i @©
= 3 N - = 5 aj(t!
XN -2 (Tuax) ™ |7 !
1=0 MAX =0
[o0]
yn = 2 bt (4)
1=0
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so that
= 1
8y 84 (Tyax)
by' = b, (Ty, ! (5)
1 1 (Tuax
' - i
cy Ci(Tuax)

Similarly for the velocity component expansions of equations (19) of paragraph 3.4.2:

e8]
b3 iai(t)(i'l)
i=0

e

s +]
I = T )= D (6)
1=0

o
zy = T dep(t)d-D
1=0

Let P, stand for any of the coefficients ay, by, cy: then,

s o]
2P, + 2 21 Co(20)P, (N
gqs=

Ll
I

_ (2q- 1)(2q- 3)(2q- 5)...3°1 .
C_(2q) = (8)
° (20)(2q- 2)(2q- 4)...4°2

Tte remaining coefficients are obtained from

[+ ]

K, =2 2 CrCo(2q)Py,, if r is even (9)
q=1
2 ¢]

Kr =2 Z C;Co(2q)P2q_1, if r is odd (1»

q=1

shere
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c =

(29) (29 - 2)(2q-4)...(2q-r+2)
- , T even
T (20+2)(20+4)(2q+6)...(2q+T)
(20-2)(2q9-4)(2q-6)...(2q-r+1)
r , I odd.
(29+2)(29+4)(29+6)...(29+r-1)

3.%.4 THRUST ACCELERATION POWER SERIES FORMULATION.

(11)

(12)

At altitudes well above the

dense portion of the atmosphere, rocket thrust may be expressed in terms of parameters which

are independent of altitude. In general, the thrust force is some function of time:

Fa = G(t)

Mass rate is generally constant, so that the instantaneous mass may be described by

With these assumptions, the thrust acceleration is given by

G(t)

Py = -
o

m 1+— 1t

]
mO

(1)

(2)

3)

In the development presented in paragraph 3.4.2, it was assumed that P8 was representable as
a polynomial expansion in time. Let (Pa)f and Gé:(t) be the magnitudes of the £-components of
acceleration and force, respectively. If (P3)§ can be given as a power series in time, then

G (t)
(Pylg = ——
(1 +Kkt)

= 2
80+81t+82t + .

. +8ntn+....

where
, Gf(t)
Gf (t) e
mo
l;‘0
k =
II“O
and

(4)

6))]

(6)
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P
_ 1 d¢ )(Pa)f
P py ag (®)

t=0

To obtain the general formulation of equation (7), write the ratio of equation (4):

. GE(t)
by = D

D(t)
Taking natural logarithms
in (Pglg = in Gs (t) - in D(t)

Differentiating equation (9)

T omm— o em—

Multiplying through by Gf'.

D(Pg)g = G’ - D(Py)g

Since D(t) = 1 + kt, D=k and all higher derivatives of D(t) are zero.

equation (11) becomes
D(Py)g = G’ - k(Pg)g

The Pt® derivative of equation (12) is readily seen to be

() _ . (P kep oy P70
D(Pglg = Gg' - PR(Py)g

Evaluating equation (13) at t = 0,

,(P) (P-1)

(Pa)ép) =leg 1, - ey ]

Hence, the PR coefficient as given by equation (7) is

(P-1)

(P)
! ]D - Pk[(P3)§

[Gf ]o
b =

P P!

Consequently,

M

(8)

9)

(10)

(11)

(12)

(13)

(148)

(15)
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3.4.5 BACKWARD INTEGRATION DURING POWERED FLIGHT. To compute powered flight
nominal trajectory in the forward direction, the following quantities are required:

a. R, - initial position vector

b. ﬁof initial velocity vector

c. o -coefficients of thrust acceleration polynomial
d. t, - start of burn

e. tt' end of burn

In the backward integration mode, the following quantities are available:

a. Ry - terminal position vector
b. ﬁT - terminal velocity vector
c. ‘31 - best estimate of thrust acceleration coefficients
d. :; - best estimate of start of burn
~

e. tf - best estimate of end of burn

The equations of motion to be solved are the same in either mode:

ﬁ = -“._R_'FT (1)
R3

In the backward mode, however, the series solutions to equations (1) become

o , L
i=o
. @ ' 1
Ry = £ 18, (7-Tyax) - (3)
i=0
Thrust acceleration is given by
N 1
T= 2 9,7 (4)
i=o -
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Expanding the function about 7y,y.
-— u y 1
T= 12 0y (T -Tyax) (5
=0

The o; may be derived from the ?"1 by means of the relation

N

v ~ (1 - k)

o = % ;Cy o) Tuax (6)
i=o

where

11
c =
17F pe(1-k)!

&)

1
T.e coefficients $;, may be computed from the coefficients of equation (6) and the terminal
conditions, R, and R;. These 3 are then converted to Chebyshev polynomial coefficients.
To make this conversion, the tile parsmeters must be defined.

0<r < THAX

-~ ~
Tuax - te-ty

(8)
t ST Tuax
“Tuax St 20
In terms of the variable t, equations (2) and (3) become
-2 8 !
i=0o
[+4]
. ' (1 -1)
Ry = 2 18, (v) (10)
i=o
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[
For conversion to Chebyshev coefficients, the S1 are normalized by

" ' i
$, =8, (Tyay (11)

The time variable corresponding to this nomalization lies in the range

-1<t' <0 (12)
whereas the Chebyshev time variable has the range

1
0<t" <o (13)
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3.5 REFERENCE BODY TRANSFER

3.5.1 INTRODUCTION. When several central bodies are to be used in trajectory
computation, criteria are necessary for determining when one central body is to be taken as
the coordinate origin in preference to another. The most common criteria are based on
"regions of influence" surrounding the planets in a heliocentric system, or surrounding a
satellite in a planetocentric system. The following paragraphs derive a general expression
for computing regions of influence, and evaluate the expression for both the solar system
and the earth-moon system.

The only transformation involved in changing reference bodies is a translation of
the reference frame from one origin to another. The directions of the coordinate axes are
defined by the base date system: the x- and y-axes lie in the mean equator of base date,
with the positive x-direction specified by the equinox of base date.

To refer velocities from one reference system to another, the relative velocities
between the new and the old reference bodies must be known. Components of this velocity are
obtained by the evaluation of polynomials which have been fitted to ephemeris data.

3.5.2 THE REGION OF iNFLUENCE. Reference 3 defines an "activity spheYe" as follows:

"Activity sphere: the region within which the planet (or moon) rather
than the sun (or planet) should be regarded as the center body for the
orbit of a body moving at hyperbolic speed1 in the planet’s gravita-
tional field. Within the limits of this sphere,...the ratio of center
force to perturbative force is greater in the planetocentric coordinate
system than in the heliocentric coordinate system."

The region of influence based on this definition is not truly spherical; however,
in most cases it is unnecessary to compensate for the small flattening and bulging of the
actual region. Therefore, a spherical shape
may be assumed, except in earth-moon space.
A general expression is now derived for the
earth-moon system following the development
of reference 4. Simplifying approximations
are then applied to make this expression
suitable for heliocentric space.

From the geometry shown in figure
3.5-1, the gravitational acceleration, per
unit mass, of the vehicle is seen to be

v Rg
ag = - 3 (H
Re
lat a speed equal to or greater than the Figure 3.5-1. Vehicle In
escape velocity. Earth-Moon Space
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from the Earth, and

from the moon. The gravitational acceleration of the moon because of the Earth is

ayp = - ' (3)

whereas the acceleration of the earth because of the moon is

py R
ag, = - : (4)
R3

Only the magnitudes of the above accelerations are employed in computing the sphere of
influence. The use of magnitudes rather than total vectors essentially restricts the vehicle
position to the earth-moon line. This restriction is not serious since the angle subtended
at the Earth by the sphere of influence is in the order of 10 degrees. Using the afore-
mentioned definition for the activity sphere, the defining equation for this region becomes

[4

8g - 8yg ay - Bgy
= (5)
ay ag
2 2 g
HE 1 1 \_ “u 1 1
T\ ) Ta\n: ©)
Rg RE R Ru RM R
Rearranging equation (6)
'LI 2 R + Ry) (R Ry)
Ry =|— Ryt ( ) ( " 1)
- (R + Rg)(R - Rp)|
Along the earth-moon line,
R" =R - RE (8)
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so that R' is positive when the vehicle is in front of the moon and negative when it is
behind. Substituting equation (8) into equation (7):

o o | Pu 2 Jd Rt Ry
=] — (R - RY) — 9)
} . * Fg u 2R - Ry
Let
| r = Rl/R (10)
K = py/ug (11n
Then
! 1 +r 1/5
r=k%5 (1 -1 (12)
2 -r
Equation (12) is also applicable to a heliocentric system; in that instance,
Rp
r T = << 1
Rgp
witere
Rp = distance from the vehicle to the planet
Rep = distance from the planet to the Sun
and
~ !EE 1/5
Ract © Rep |\ (13)
where

RACT is radius of activity sphgre

K is in this case up/ug
Mean values for Rgp DAY be used for all the planets of the solar system.

For the earth-moon system, equation (12) may be solved for the radius of the
activity sphere. In this case, however, consideration must be given to the fact that,
because of the proximity of the Earth, the lunar region of influence is not quite spherical.
On the side of the moon closest to the Earth, the radius of the region of influence is
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- (14)

where

Th = minimum value of r, i.e., when RM =R - RE is positive
The maximum radius is obtained when

R, = R, - R (15)
is positive. Under this condition, equation (12) becomes

(1 - rM) 1/5
ry = K5 (1 + ry) |——— (16)
(2 * 1y

Expanding the fifth roots by the binomial theorem, and retaining terms up to second order:

~1/5

1+ ry 1
= —— (0.1 1,2+ 03 r, +1) (17)

2‘r.J 21/5

q1/5
1 - ry 1 2
—— = —— (0.1, - 0.3r,+ 1) (18)
2 + 'y 21/5

Substituting equations (17) and (18) into equations (14) and (16), respectively, and retain-
terms up to the second order:

0.26r 2 + (1 +0.76)r, - 6 =0 (19)
0.20r,2 + (1 - 0.76)r, - 6 = 0 (20)
where
1/5
K2
6 — (21)
2
Then
V 1.20602 + + -(1 + 0.76
- .29 1.46 + 1 ( ) (22)
0.40
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_V/1.206% - 1.46 +1  -(1 - 0.76)
-
n 0.46

(23)

The moon’ s region of influence may conveniently be described by an ellipsoid having
one focus at the moon. Computing the ellipsoid’s major axis:

28 = (r_ + r.)R (24)

| ]
The ellipsoid’s eccentricity is obtained from
Rr_ = a(l - e)

or
e = —m—— ’ (25)

The ellipsoid’s minor axis is given by

2b = 2a/ 1 - e? (26)

For the X, ¥, Z coordinate system of figure 3.5-2, the center of the ellipsoid is (x,, O,
0). where

™
|
-]
]
g}
o

1
° ;{r. - r.)R (27)

The quantity R, the earth-moon distance, is actually a function of time, so that the figure
of the eilipsoid changes with time. It is customery to assign this quantity a value corre-
sponding to the mean lunar orbital radius.

Reference body transfer criteria in earth-moon space is determined by vehicle
position with respect to the activity ellipsoid, the equation for which is

(xe - x0)2+ yez + zez =1
(28)
a? b2 b2
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CENTER OF
ELLIPSOID

<Y

X,Y, Z ARE INERTIAL COORDINATE SYSTEM AXES
!17.1 ARE UNIT VECTORS OF LUNAR REFERENCE SYSTEM

Figure 3.5-2. Inertial and Lunar Reference Frames

The vector Re is the vehicle position with respect to the moon specified in a coordinate
system in which the x-axis is directed along the earth-moon line from the moon to the Earth,
and in which the z-axis is determined by the angular momentum vector of the earth-moon sys-
tem. If R is lunar position with respect to the Earth and ¥ is lunar orbital velocity, both
as obtained from the ephemeris, then the unit vectors of the lunar coordinate system (figure
3.5-2) are:

X = -— (29)

— _ RxYy

z, = T— (30)
e |R x V]
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Ye

Z, XX, (31

Let R. be vehicle position with respect to the moon in base date inertial coordinates. Then,

e ~Ry-vy. (32)

N
"
b
=
N

The substitution of these values into equation (28) permits the development of the following
criteria:

(x¢ - xc:)2 yez ze2
== + + (33)
a2 b2 b2
If = > 1, vehicle is outside ellipsoid of influence.
If = = 1, vehicle is on ellipsoid of influence.
If = <1, vehicle is inside ellipsoid of influence.

Methods for employing these criteria are discussed in paragraph 3.5.4.

3.5.3 EQUATIONS OF TRANSFER. The transfer equations are simple transformations. For
position transfer from body 1 to body 2:

R, =R, - R (34)

where

= position of second body with respect to the first

R1 = vehicle position with respect to first body
R2

n

vehicle position with respect to second body
R, Rl' and R2 are specified in the base date inertial coordinate system.

For velocity transfer from body 1 to body 2:

R, =R, - R (35)

where

R = velocity of second body with respect to the first



ANALYTICAL BASIS

vehicle velocity with respect to first body

R,
R,

vehicle velocity with respect to second body
3.5.4 APPLICATION OF TRANSFER CRITERIA

3.5.4.1 Heliocentric System. The activity radii, RACT' for the solar system planets
considered in this program are listed in table 3.5-1. The values were computed using equa-
tion (13) of paragraph 3.5.2. The vehicle’s distance from each of these planets is computed,
and the distances compared with the associated activity radii. If the vehicle is outside of
the spheres of influence of all of the planets, the Sun is used as the reference body.

Table 3.5-1. Activity Radii for Planets
of the Solar System

Planet QAST (In Astronomical Units)
Venus 0. 003586
Earth 0.005384
Mars 0.003364
Jupiter 0.176967
Saturn 0.317538

3.5.4.2 Earth-Moon Space. 1In considering lunar transfer, the Earth’s proximity must

be considered in designating the region of influence. If the region were spherical, i.e., if
equation (13) of paragraph 3.5.2 were applicable, its radius would change by about +2000 miles
from perigee to apogee of the moon’s orbit about the Earth. The radius of the sphere is

about 36,000 miles; therefore, this change will be considered negligible and the mean earth-
moon distance wild be used in computing the region of influence.

Calculating the elements of the ellipsoid gives rise to the list in table 3.5-2.

Since a and b are nearly equal, the moon’s region of influence may also be taken
as spherical with

a b *=9.12 E.R. = Racr-

The displacement of the center of the region of influence from the moon’s center, Xy is
nearly 4000 miles, sufficiently significant to be retained in positioning the sphere.
Equation (33) of paragraph 3.5.2 therefore can be rewritten as

2

(x e

. 2 2
e xp) ¢ Ve tz

a2




TRAJECTORY BETERNINATION

Table 3.5-2. Lunar Region of Influence
Ellipsoid Parameters

6 = 0.150

Ty = 0.135

ry = 0.167 Normalized Distances
a = 0.151

b = 0.150

e = 0.108

R = 60.39 E.R.

0.966 E.R.

3-39/3-40



SECTION 4

PERTURBATIONS

4.1  INTRODUCTION

This section develops expressions for the components of vehicle acceleration due to
the following perturbing influences: planetary attractions; oblateness of the Earth and Moon;
atmospheric drag; solar radiation pressure. Where necessary, descriptions are provided of
the general methods used by the Program to implement these expressions.

4.2 PLANETARY ATTRACTIONS

The general expression for the perturbation acceleration, Pl, of a space vehicle
due to the gravitational influence of the Sun, Moon, and planets (excluding the reference
body) is given by (refer to Section 3)

R .-
O | PR
RVJ Rrj

1n

where

Hy = GMy VEHICLE

G = gravitational constant
M. = mass of jth body

= position of vehicle with
respect to the jth body
(figure 4.2-1)

Rrj = position of reference body
with respect to the jiB
body

REFERENCE
BODY

If the two terms of the bracketed expres-
sion in equation (1) are nearly equal, the Figure 4.2-1. Planetary Attraction
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indicated subtraction will result in a loss of accuracy due to round-off errors introduced by
machine computations. Battin (reference 5) has rewritten equation (1) in a form which elim-
inates the problem:

Ky
P, =2 — | R {£(m} -AR (2)
J R 3
vl
where
2 AR
U= [Rrj +—:| * AR (3)
2 2
R
rj
_vuls + U@ +ml
f(u) = (4)
1+ (1 + v)3/2
AR = RVJ - Rr] (5)
4.3 OBLATENESS
§.3.1 GENERAL. The Program takes into consideration perturbations due to the oblateness

of the Earth and the Moon. Paragraph 4.3.2 provides a derivation of a space vehicle’s per-
turbation acceleration due to the Earth’s oblateness. Paragraph 4.3.3 provides a similar
discussion for the Moon.

NOTE: The notation used throughout the discussion in paragraph
4.3.2 is consistent with that used by Kaula and Kozai with the
exception of the sign of the potential.

4.3.2 EARTH'S OBLATENESS. Consider a ponderable body having an arbitrary figure and
an arbitrary mass distribution as shown in figure 4.3-1. The contribution of the mass ele-
ment dm to the potential at point P is given by

Gdm

du = - — (1)
Ar
du = -Gdm[r? - 2Rr cos v + R?] (2)

where

dU = differential potential




PERTURBATIONS

<

Figure 4.3-1. Calculation of Potential

g

differentinl mass element

r = distance from center of coordinates to point at which dU is computed
R = distance from center of coordinates to mass element dm

¥ = angle between the vectors I and R

A r = magnitude of the vector difference of r - R

Equation (2) may be reformulated by expanding the bracketed terms in a Legendre series in
(R/T):
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.Gdm % R{D
dg = —— 3 [P (cos ¥) | (3)
S r

in which Pn(cos ¥) is the nth order Legendre polynomial. In spherical coordinates, let

(R, Gu, Xu) and (r, 6, A\) represent the positions of the mass element and the point of inter-
est, respectively. The angles 8' and O are co-latitudes of the two points, whereas the
angles Xl and A are their longitudes. It can be shown that

cos ¥y = cos 9. cos O + sin 9! sin O (cos Ay cos A + sin X' sin \) (4)

The Legendre polynomials can now be expressed in terms of the associated spherical harmonics

Pn-(T)Z

_ Ml -myo2 »
P,(cos y) = 3 |——— — P, "(cos 9.) P, (cos f)cos m(Xu - A) (5)
2=0 (n + m)! 8,

where

= 2 whenm =0

1 J
!

(6)

= 1 when m ? 0

Substitution of equations (5) and (6) into equation (3) yields an expression for dU in temms
of tesseral harmonics. Integrating this expression over all mass elements in the ponderable
body gives the potential at point P (figure 4.3-1):

¢ ® [ Ry " n
v=-—3 |— b3 [Pn'(sin ﬂ)(Cn n COS mA + S p Sin mA)] N
r r , ’
n=0 n=0
where
Ro is the mean equatorial radius of the ponderable body
R Cy,n 8nd 8,  incorporate the results of the integration

[ is the latitude of P above the equatorial plane.

In the preceding general formulation, the range of the indices (m, n) is
unrestricted. For practical computational purposes, however, the following limits on the

range are employed:
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Range of Indices (m,n)

2 n
0,1,2 2
0,1,2,3 3
0,1,2,3.4 4
0,1,2,3 5
0.1,2 6
0.1 7
0 8
0 9
0 10

The fundamental term is given by the 0,0 combination. Zonal harmonics (which
indicate the variation of the expression with latitude) are obtained from combinations in
which m = 0, while sectorial harmonics (which indicate the variation of the expression with
longitude) arise when m = n; the remaining combinations are truly "tesseral” or "square” in
that the function

sin mA
P "(sin B)
cos mA

vanishes both along a number (n-m) of parallels of latitude and a number (2m) of meridians of
longitude. Figure 4.3-2 provides an illustration of zonal, sectorial, and tesseral harmonic
variations for a sample set.

=1k

ZONAL SECTORIAL TESSERAL
HARMONIC HARMONIC HARMONIC
FOR FOR FOR
n:4 n=3 n=8
m:=0 m:=3 m:=3

Figure 4.3-2. Sample Spherical Harmonics
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With the coordinate system defined as follows, equation (7) describes the Earth’s
gravitational potential at any point in space:

(a) The center of coordinates is the Earth’s center of mass.

(b) The 7§§'plane is the true equatorial plane of date. The X-axis passes
through the Greenwich meridian.

(c) The i;axis is the Earth’s spin axis.

With these definitions, equation (7) describes the Earth’s gravitational potential
at any point in space; the gradient of this potential gives the corresponding force field.
The force field, however, is described with respect to a moving coordinate system; if the
field is to be employed in trajectory computation, it must be transformed to an inertial base
date coordinate frame.

The components of gravitational acceleration will now be expressed by a general
recursive formulation valid for any n, m combination. First, it is necessary to develop
expansions for cos mA and sin mA in terms of cos A and sin A. Let

A

z= (at jf) = e (8)
Then,
z® = (a t+ jiB)® = ej‘x = cos mA t j sin mA 9)
Expanding (a + j3)™® = (cos A +j sin M™ by the binomial theorem, and equating real and
imaginary parts in equation (9):
P(m)
cos ik = 3 [(-1)**D) ¢, (cos N) (™ 2K (55 \) (2K)] (10)
k=0
P'(m)
sin A = X [(-1)(1‘)!02k+1 (cos A) (B-2K-1) ,g4p )y (2k+1)] (11)
k=0
where
BT ri@m - 1)l
m
—_— if m is even
2
P(m) = (13)
m-1
if m is odd
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e
_2.- 1 ifm is even

P'(m) = (14)
m-1

ifm is odd

The definition of equations (13) and (14) maintain positive exponents for equations (10) and
(11).

From the definition of spherical coordinates:

\
sin B :_z-
r
x
cos 8 cos A = — > (15)
r
Yy
cos 8 sin A = —
T

Multiplying and dividing equations (10) and (11) by cos™B and using equations (15),

1 P(m)
cos mA = T -2 e, (x) (B30 () (20D (16)
r® cos®™B8 k=0
1 P’ () x K+1
sin m\ = S -1 0y, () (B2E-D) (5 (2k4 D) an

r® cos®S k=0

Substituting equations (16) and (17) into equation (7),

o Rg n Pn'(sin 5
z e —————————

U=-u * G(x,y) (18)
n=0 r®*! a=0 r® cos™ 8
Pm 2k 2k
G(x'y) = cn,- z [(_1)(k"2)-czk (x)(.‘ ) (y)( )]
k=0
P’(-) k¢l
+ 8, 0 T (D) ey, (1) (A1) (5 (2Re1) (19)
k=0
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For given values of m and n,

4R, P "(sin B)
U = . .G x. (20)
n.m RERED cos® 3 x. ¥
From the definition of Legendre coefficients,
n
P " (sin B) 1 q® tn ) .
= (74- 1)
cos®s 28ny g7t 0
(21)
7 = sin BB
Upon substitution of equation (21) into equation (20),
-pRon dq®tn
U = (1% - 1" 6(x,y) (22)

n,m
Znnlrn"'* 1 d,rl+ n

Gravitational acceleration is computed by taking the gradient of the potential
function of equation (22). The general derivative in the gradient will be taken with respect
to £, where £ takes on the values of x, y, and z. Consequently, the magnitude of the
£-component of acceleration will be designated by Afﬁ’m and

x .
An,l - xn,u
y = v
Apmn = Yy (23)
Z -
Aﬂ.ll : zn.m
With these definitions,
U
. =——3';" (24)

Carrying out the indicated operations,
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GR " . m+n
1 d
Afn - o [(l n+ )é'G(x,y) L S
20y B tntl r2 ar®**t o
y.} a® +n+1
LIE TR NI it S
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From Rodrigues’ formula
m+ P(n) -1y 8 -
qu tn (2.1t 3 (-1)®n!(2n - 2g)! (0-2g-m) (28)
s R g=0 gl(n- g)l(n- 2g - m)!
1 P(n) -1y ¢ -
g:_*_“__‘_(Tz Cyn = ‘z“ (-1)®n!(2n - 2¢)! H(0-2g-n-1) 29)
a2+l g=0 gl(n-g)!(n-2g-m- 1!

where P(n) is the integral part of (n-m)/2.
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In addition,

x 1 if x = &£ dy 1 ify=¢ dz 1 if z = &
= —=( (30)

o 0 if x # & B oifty7ze % 0it z 7 &

Substituting equations (28) and (29) into equation (25), combining terms, and changing the
sign in accordance with the usual convention:

. _
N - “HR, P;?) (-1)%n1(2n - 2¢)! z| (n-28-m-1)
nen gl(n-g)l(n-2g-mt|r

2nn“.l+ n+1 g=0
z n- 2g- ) 296G \
X (2n-2g+ 1y o2 BIEIW o2 -[— (x.5) (31)
r3 r &
since
= st pe X @
r

Tables 4.3-1 and 4.3-2 list the appropriate values of coefficients C .m " and 5, n,n
respectively, to relate equation (31) to the Earth’s gravitational field. The values listed
are for the range of n and m suggested earlier. Note that values are not supplied in tables
4.3-1 and 4.3-2 for the fundamental (n = m = 0) term of the A .» expansion. The fundamental
term represents the vehicle' s acceleration due to a spherical Earth while the other terms
account for the Earth’s oblateness. Thus,

@© n
(Pz) = 3 > An o (33)
E nx1 m=0 '

where (Pz)z is the vehicle’'s perturbation acceleration due to the Earth’s oblateness.

4.3.3 MOON'S OBLATENESS. The potential, U, at a point P (figure 4.3-3) due to the
Moon’s gravitational field is given by

1

(1)
R, - rl

-_& Gdm |

where

dn is a differential element of lunar mass

G is the gravitational constant
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R" is the selenocentric position of the vehicle
r is the selenocentric position of dm
M is the mass of the Moon

Rewriting equation (1)

M #uR' - (2)

2 2rR,
a_._z- 2’ @)
Ry Ry
equation (2) is rewritten, using a binomial expansion, as
o = [ o 1+r-R. 1 r2
Mo TR T T
MR 2 2 2
M RI R"
.0 12
3| 2r Ry
iy eyl IO “
Ry
The quantity
. 2
3| 2r-Ry
8 2
Ry

can be rewritten as

where [rr] is a dyedic of order 1. There-
fore, neglecting all terms in equation (4)
of an order higher than that shown in the
Figure 4.3-3. Lunar Potential equation,
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r-R 2
~ M N 1 ridam  _ (rrl =
Uy~ -— .+";—TR dm - — j. -3R.' 2 dn'R. ' 5
| ] Ry Ry
Over the entire mass of the Moon,
r°R.
_’;-——; dm = 0. (6)
Ry
Therefore,
2
~ M 1 r<dm = [rr] =
Oy ~ -—| M - — - 3Ry dm-R 7
¥ Ry 2 ‘L .2 " j; — g . a
] n
Equation (7) can be rewritten as
~ UM -
Uy ~ R I..[f(r’[l] - 3[rr])d-] Ry (8)
R 3 | |
] 28..
where [1] is a unit dyadic.
Let
v} =J; (r21] - 3lrrl)dm (9)
Therefore,
~ M
Ry 2,5

The quantity [V.] represents the lunar oblateness dyadic. This dyadic, which is independent
of vehicle position, may be written as _f_ollo_w_s in terms of lunar constants in the lunar
principal axis coordinate system (X,. Y. L) defined in Appendix A to this manual:

2A-B-C 0 0
(v, = 0 2B-A-C 0 (11)
" 0 0 2C-A-B
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where

= principal moment of inertia on ;i = f"(Y2 + Zz)dm

A\

principal moment of inertia on‘yi = f'(x2 + 22)dm

A
B
C = principal moment of inertia on Ei = f,‘(x2 + Yz)dm

Reference 6 gives the following values for A, B, and C:

A = 0.88746 x 1022 kg - km2
B = 0.88764 x 102° kg - km?2
C = 0.88801 x 1029 kg - km2

In these units,

[v,]“= 0 1.9 0 | kg-km2 (12)

The vehicle’'s acceleration due to the Moon’ s oblateness is given by the gradient of the
oblateness term of equation (10):

G
(Ppy = V| — R, [V,]-R, (13)
(] 2R 5 ,
M
G
(P, =?[V(R,‘5) Ry © (V] - Ry + Ry V(R (V] - R,):] (14)
Now,
V(Ry3) = -5R,"% VR, (15)
Since
R
VR, © .y (16)
Ry
-5R,
V(Ry %) = — (17
R 7
M
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v, 0 0
VR [V 1R = Vg | o0 Voo 0 IR,
0 0 Vs

2 2 2
V(Vyg X2 + Vg Yy° + Vg 2,5

2vy, Xy + 2V, Yy + 2v,5 2,

2[V,] - R, (18)

where Rl is written in the coordinate system for which [V.] is a diagonal dyadic.

Therefore,

- 9 M @
(Pz). = '; ;—7 R.[R.' ['.] . R.] + ;'_5 (v.] . R. (19)

_ _ _In the trajectory calculations of the Program, R, is given in the base date

(XB. yn. ZB) system. It is therefore necessary to transform [V.]. into that system. This
may be done by a composite transformation composed of precession, nutation, and libration.
Thus ,

[v,] , - LAl [N] [L] [v,] .[L] “l[N]-1a]-? (20)

where [A], [N], and [L] are given in Appendix A.

It should be noted that the lunar oblateness perturbation accelerasion, (Pz)u- is
appreciable only if RI is less than 40,000 km. For values of R! greater tham this value, the
lunar oblateness perturbation acceleration may be assumed to be zero.

4-15/4-16
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4.4  ATMOSPHERIC DRAG

4. 4.1 INTRODUCTION. Accurate simulation of the trajectory of an artificial satellite
or space probe requires consideration of vehicle deceleration resulting from atmospheric
drag. At the present time, there is evidence that Mars, Venus, Jupiter, as well as the Earth
have sufficiently dense atmospheres to retard the motion of a space vehicle.

The following paragraphs describe the general equations used for drag computations,
some of the problems involved in simulating planetary atmospheres, and the effects, on the
simulation, of making certain simplifying assumptions. The concluding paragraphs describe

a method of simulating atmospheric drag representing a complexity commensurate with the
state-of -the-art.

An analysis of the effects of atmospheric drag must take into account the mission
of the vehicle. There are three missions in which atmospheric drag could play an important
part. The first mission is a low-eccentricity orbit about the Earth or another planet. The
second mission is planetary re-entry, and the third is a fly-by orbit (pass around a planet
or moon) of the space vehicle. 1In the following discussion, the three cases will be
referred to as the "orbiting", "reentry"” and "fly-by" cases.

4.4.2 DRAG EQUATIONS
§.4.2.1 General. The form of the equation used to compute the magnitude of the
vehicle deceleration, P4, resulting from atmospheric drag depends on the diffuseness of the

atmosphere. For relatively dense atmospheres where the assumption of continuum flow is
valid, the following equation is commonly used:

1
= 2
Py = o {P¥a7Cps) (1)

where

p is the density of the atmosphere at the vehicle
V. is the magnitude of the velocity of the vehicle with respect to the atmosphere
Cp is the drag coefficient of the vehicle

S 1is the effective surface area presented by the vehicle

m 1is the mass of the vehicle

As the atmosphere becomes more and more diffuse, the mean free path (average
distance between impacts of air molecules) increases. Figure 4.4-1, obtained from reference
7. shows mean free path plotted as a function of altitude. When the mean free path becomes
greater than the diameter of the vehicle, the collisions become two-body collisions and the
assumption of continuity of the air mass (continuum flow) is no longer applicable. The
assumption of a diffuse atmosphere, where all collisions are two-body and the mean-free-path
exceeds the dimension of the vehicle passing through, is called free molecular flow,
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Figure 4.4-1. Variation of Mean Free Length With Geocentric Altitude

Ketchum (reference 8 ) has derived, using the Maxwell-Boltzman Distribution Law,

the following formula for the magnitude of the drag deceleration in free molecular flow:

where

m
Py = am [(1t2rR/N) pV,C,,S] (2)

R is the radius of the vehicle
A is the mean free path

Cav is the average velocity of particles in the medium
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Ketchum is uncertain as to the validity of the (1 + 2R/A) term in equation (2).
A more correct equation may be

_om
Py = ;; [pVa Cav 5]

This program uses the latter equation. From figure 4.4-1, it is seen that A varies very
rapidly with altitude so that the change from 2R = A (where the transition from continuum
flow occurs) to 2R = 0.1 A (where the correction becomes negligible) takes a short time.

4.4.2.2 Direction of Drag Force. By definition, the drag force acts in a direction
opposite to that of the vehicle’s velocity with respect to the air mass, Va. Paragraph
4.4.2.5 describes the computation of Va. The direction of the drag force is obtained by
normalizing this vector.

4.4.2.3 Yehicle Mass, In the most general case, the vehicle mass terms in the drag
equations must be considered as variable with time. 1In the orbiting case or the fly-by case,
a step change in mass representing the separation of a landing craft is conceivable. A
long-term steady-state mass flow rate, however, would probably be small.

For the reentry case, if the reentry vehicle is of the heat-sink type, the mass
would be constant. For an ablative nose cone (i.e., one which loses, due to friction, mass
when moving at high speeds), the mass flow rate is a function of the drag. For ballistic
missile applications, this mass change is usually ignored. 1In any event, such changes in
mass represent a small error in the location of the impact point.

§.%.2.4 Surface Area. The effective surface area term S, in the drag equation is not
simply the cross-sectional area of the vehicle. The vehicle, in passing through the air,
produces a shock wave which skirts the missile thereby placing the effective cross-sectional
area at a point somewhat close to the nose. Since the shock wave changes with air speed, so
does the effective cross-sectional area. 1In practice, S is made constant and any variation
with speed is included in the coefficient of drag.

NOTE: The preceding discussion assumes that the angle of attack
of the vehicle is zero, i.e., that the vehicle velocity relative
to the air mass is in line with the vehicle longitudinal axis.

§.4.2.5 Air Speed. The velocity of the vehicle is computationally available in an
inertial coordinate system. The vehicle velocity with respect to the moving air mass, V‘,
in the same coordinate system, is obtained by subtracting the velocity of the air mass from
the vehicle velocity. The air speed is the magnitude of V.. A good first approximation to
the velocity of the air mass is obtained by assuming the air mass to be rigidly attached to
the rotating planet.

A better approximation could be obtained by including the effects of wind velocity.
The purely local effects have to be neglected, but the long-term horizontal effects are
known as a function both of position on the Earth’s surface and of altitude. The effects of

the wind velocity’s direction (independent of altitude but dependent on latitude and longitude)

and magnitude (strongly dependent on altitude, less strongly on latitude, and least on

4-19
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longitude) would have to be included. The error made by neglecting Earth winds is about
1500 feet at impact for a typical ICBM mission. It should be noted that winds are of
importance only in the Earth’s lower atmosphere, mainly for the reentry case.

4.4.2.6 Drag Coefficient. The drag coefficient, Cp: is sometimes considered to be
constant, but a much more accurate representation is obtained by considering it to be a
function of Mach number, where the Mach number is defined as air speed (paragraph 4.4.2.5)
divided by the speed of sound.

The speed of sound is a function of altitude but is easily computed, from a stored
table, using a table look-up procedure. Linear interpolation is used between tabulated
values., A different table is required for each planet.

It should be noted that as altitude increases, the atmosphere becomes rarified to
the point that the speed of sound loses its physical significance.

In practice, C, is tabulated for about 25 different Mach numbers. These numbers
are denser for speeds below Mach 2 than those above, and very dense in the region around
Mach 1. For intermediate values of Mach number, linear interpolation is used.

Inadequate knowledge of the drag coefficient is one of the major sources of
inaccuracy in the simulation of drag. Since drag coefficient is a function of Mach number,
drag coefficient data are obtained by wind tunnel measurements made at a range of Mach
numbers. These data are tabulated to a precision of 1 part in 30. At best then, the toler-
ance is half of 1 part in 30, or #1.7%. It is believed, however, that the total error is
more in the order of +3%, even at the tabulated points.

4.4.2.7 Discontinuity Between Continuum and Free Molecular Flow. It is readily
seen that the formula for drag (paragraph 4.4.2.1) in the region of free molecular flow is
different from that in the region of continuum flow. Even if the two formulas were to agree
at one altitude for a given Va and Cav: permitting a continuous transition from one formula
to the other, there would be no continuity at the junction of the regions for a different

Va or Cav'

A possible solution is to introduce a transition region in which a weighted average
is taken between the drag values computed by the two methods and gradually slide the weight
from unity for free molecular flow and zero for continuum flow to unity for continuum flow
and zero for free molecular flow.

4.4.3 ATMOSPHERIC MODELS

4.4.3.1 Iintroduction. The following paragraphs provide a summary of current knowledge
of the composition of the atmospheres of Jupiter, Mars, Venus, and the Earth. A discussion
is provided of the models currently being used (or developed) to simulate these atmospheres.

Y.4.3.2 Jupiter. Current studies are concentrated on determining the composition of
Jupiter’'s atmosphere. At the present time, it is considered premature to even begin to
consider the relationship of density to altitude.

4.4.3.3 Mars. Density versus altitude data for Mars are fairly well agreed upon for
altitudes up to about 30 km. For altitudes up to 80 km, Schilling (reference 9) gives
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values for density with a maximum uncertainty of about 8:1, and a standard deviation of about
3:1. Schilling’s model is easily approximated by an exponential interpolation: tabular
listings of logarithm of density versus altitude are made; linear interpolation is used
between tabulated values; and the antilog is obtained. With a 7-value table of density and
altitude, a maximum error of 1.4% can be obtained for the Schilling Model II Mars atmosphere.

§.4.3.4% Venus. Because the surface of Venus is always obscured from view, there is
little agreement about its atmospheric model, or composition within the cloud level (at about
30 km in altitude). However, in 1959, the star Regulus was occulted at 100 km in altitude,
therehy providing fairly definite data.

There are the three theories of the model of Venus’ atmosphere: greenhouse;
aeolosphere; and ioncosphere. However, no one theory explains all of the available informa-
tion about Venus. At the present time, there is no generally acceptable density versus
altitude curve for Venus.

4.4.3.5 Earth

4.4.3.5.1 General. Although knowledge of the Earth’s atmosphere is not complete, the known
effects are far more complete than for any of the other planets and represent an adequate
model of the Earth’s atmosphere even at altitudes of 2000 km (about 6.6 million feet). It is
convenient to separate the atmosphere into two parts, the lower atmosphere and upper atmos-
phere, with the separation occurring at about 120 km (400,000 ft.). Drag in the lower
atmosphere is large and a vehicle entering it will usually be slowed down sufficiently to be
captured by the Earth. Thus, the lower atmosphere is primarily of concern in the reentry
case. The upper atmosphere is characterized by smaller drag effects which are of significance
mainly over long time arcs (orbiting mission). In the cases of reentry and fly-by, the upper
atmosphere can probably be neglected.

4.4.3.5.2 Lower Atmosphere. Data for an average model have been well established for the
lower atmosphere. There are five sources for these data: U.S. Standard Atmosphere, 1962;
COSPAR International Reference Atmosphere (CIRA), 1961; COESA Table for Tropical Latitudes,
1962; ARDC Model Atmosphere 1956, 1959. Table 4.4-1 shows the density deviation (in percent),
as a function of altitude, of each of the others from the U.S. Standard Atmosphere values.
From the table, it is evident that, except for the COESA tables, there is good agreement
between the various tables at low altitudes. Note that the U.S. Standard Atmosphere and

CIRA tables are in excellent agreement all the way to 120 km (400,000 feet).

The lower atmosphere is characterized by seasonal, diurnal, and latitude variations;
however, none of these are sufficiently well documented. The only effect of omitting them is
that the impact point of a re-entering body would be slightly different. It was estimated in
1958 that the standard deviation for a heat-sink type nose cone used in the ICBM application

is only about 0.5 nm.

The speed of sound in the lower atmosphere can also be obtained from the five
sources given earlier, but only in the range 0 to 90 km. However, for the U.S. Standard
Atmosphere and CIRA sources, values up to 120 km can be computed from absolute temperature
and mean molecular weight data tabulated in these tables.
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Table 4.4-1. Comparison of Sources of Density Data

U.S. Standard
Atmosphere
Altitude Density Percent Deviation From Reference
values
(Reference) ARDC ARDC CIRA COESA
km ft slugs/ft3 | 1956 1959 1961 1962
0 0 2.38°3 ] 0 0.55 - 4.7
3.0 10, 000 1.76°3 ) 0 -0.91 - 5.32
5.5 18, 000 1.3673 0.04 0 1.85 - 1.67
10.1 33, 000 7.97°4 0.05 0 1.68 1.92
14.6 48, 000 4.0074 0.09 0 2.36 15.5
20. 4 67, 000 1.61°4 3.28 0.16 0.48 6.80
29.0 95, 000 4.20°5 0.59 - 2.36 0.10 0.46
33.5 110, 000 2.07°% - 3.13 - 3.13 0.68 2.53
48.8 160, 000 2.32°6 4.7 4.77 0.77 8.93
67.1 220, 000 2.50°7 15.0 15.5 1.30 8.10
91.4 300, 000 4.6279 31.2 -10.8 0.11 --
121.9 400, 000 3.62°11 81.5 -35.0 1.17 --

4.4.3.5.3 Upper Atmosphere. Models of the Earth’s upper atmosphere must take into account
solar activity. There is evidence that solar activity occurs cyclically at periods of 27
days, 6 months, 1 year, and 11 years.

Theoretical models do not exist for the 27-day, 6-month, and 1-year cycles.
Diurnal variations, if any, of the models for these cycles are not known. Completion of
synthesis of the 27-day model is not anticipated until mid-1964; completion of the synthesis
of the other two models will be later than that. Investigation of the 11-year cycle
(corresponding to the sunspot period) in solar flux has lead to the Harris-Priester model of
the upper atmosphere. This model (references 10 and 11) has diurnal and solar flux variations.
R. Bryant of the Goddard Space Flight Center (GSFC) has had excellent results using density
data from this model to predict the orbit of the Echo Satellite over an extensive period of
time.

Roemer (reference 12), assuming the exosphere to start at 600 km, performed a
Fourier analysis on the temperature variations of solar flux below that altitude and assumed
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isothermal conditions above. The resulting numerical approximation was accurate to +29. A
program (written by R. Devaney of GSFC) based on these results occupies 1530 words of storage
on the IBM 7094 computer. Approximately 1710 words of storage are needed for constants.
Harris indicated that the start of the exosphere could be reduced to 400 km which would

reduce the constants storage to 1450 words, but leave the program size unchanged (at 1530),
for a total of 2980 words.

In an attempt to shorten computation and reduce storage without causing a
significant deterioration in accuracy, the use of a simple table-lookup procedure for
density was investigated. The result is a table comprising 1074 words of storage. Density
data are stored at each combination of 16 values of altitude, 13 values of local solar time
(difference between the right ascensions, on the celestial sphere, of the vehicle and the
Sun), and 5 values of solar flux. The values of altitude, time, and solar flux are also
stored, adding 34 values. For a maximum error of 2.7%, linear exponential interpolation
(in 3 dimensions) is satisfactory. This maximum error would only be obtained if, simultane-
ously, solar flux is high, local time is at 14 hours, and altitude is half-way between two
tabulated values. The average error would probably be below 1%. The program size was

estimated from the equations as 645 for a total of 1900, after adding 10% of the total for
contingency.

There is an intuitive difficulty in using local solar time as one of the parameters:
At the North or South pole, there is no midnight and noon, local solar time being undefined.
Since there is no evidence of direct variation of the Harris-Priester model with vehicle
latitude, it has been suggested that the use of zenith angle in place of local solar time
might give'more intuitively satisfying results. (Zenith angle is the angle subtended on the
celestial sphere between the vehicle position and the Sun’s position.) Unfortunately, the
use of zenith angle introduces an unacceptable discontinuity. The zenith angle for a
vehicle a degrees above the ecliptic decreases to a degrees at noon (minimum) and then
increases again; it can never decrease below a degrees. This is evident from figure 4.4-2.
To yield a cyclic time function, zenith angle would have to be arbitrarily made negative
before noon, going to -a degrees at noon, and + a degrees instantaneously after noon. This
discontinuity is unsatisfactory. Therefore, the use of local solar time is recommended
despite the inherent difficulty at noon and midnight.

The upper atmosphere has a delaying effect on solar radiation. It takes several
hours for the Sun’s heat to pass through the atmosphere and reach the Earth’s surface. The
Harris-Prijester model is based on densities computed at the Earth’s equator. Intuitively,
it is expected that it will take longer for the solar flux to reach the poles as opposed to
the equator. Therefore, it is considered that there is an effective variation of solar flux
with latitude. This variation is implemented in the Program by applying the Harris-Priester
model at the equator and a stored table of "twilight" densities at the poles. The cosine of
the latitude of the vehicle is used as a weighting factor to interpolate between the two
sets of data.

4.4.3.5.4 Density Discontinuity Between Lower and Upper Atmospheres. In the Parris-Priester
model, the density at 120 km is fixed independently of solar flux and time of day, and is 344
higher than the U.S. Standard Atmosphere value. No other model for the lower atmosphere
gives a value close to it so that there is a discontinuity in density between the Harris-
Priester model and all of the models of the lower atmosphere.
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Figure 4.4-2. Zenith Angle Variation

4.4.3.6 General Considerations for Atmospheric Simulation

4.4.3.6.1 Definition of Altitude. Harris has suggested that the geocentric altitude above
the oblate earth should be used for the Harris-Priester model of the upper atmosphere. For
the lower atmosphere, the same definition of altitude should be used.

For all other planets, geocentric altitude above an ellipsoidal or spherical planet
could be used.

4.4.3.6.2 Medium Velocity. The average velocity of particles in the medium (C.') is of
importance only when the altitude is high enough so that free molecular flow is valid. Free
molecular flow is of concern only for the Earth since, for other planets, the atmospheres
are not known to a high enough altitude. For the Earth, from figure 4.4-1, it is seen that
for the usual space vehicle dimensions, free molecular flow occurs in the upper atmosphere.
Frg?_gguations I. 3.4-(1) and I. 2.6-(1) of reference 7, C_._ is found to be proportional

av
to NT/M:
T
Cav a -
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where

T 1is absolute temperature

M is mean molecular weight

The medium velocity can be computed using values of T and M from the Harris-Priester model.
The variation in Cqy with local time and solar flux was 122% for altitudes below 500 km and
+14% for altitudes above 500 km. Therefore, were Cay to be approximated by a function of
altitude only, an error in drag of 1229 would be introduced. An error of this order of
magnitude is intolerable.

Thus, drag is linearly proportional to both density and medium velocity, both of
which are functions of the same three parameters (altitude, local time, and solar flux). It
is natural then, for altitudes where free molecular flow pertains, to store the product of
density and medium velocity (as a function of the three parameters) instead of both density
and medium velocity separately.

4.4.3.6.3 Accuracy. From the foregoing analyses, it is concluded that the computation of
drag is probably accurate to +5% in the Earth’s lower atmosphere, and is less accurate in the
upper atmosphere. For Mars, the knowledge of drag is probably not as accurate as +10%, and
for Venus considerably worse. Therefore, calculation of drag and its constituent parameters
can always be computed in single precision without degrading the over-all precision of
computation.

4.4%.4 DRAG COMPUTATION METHODS USED BY PROGRAM

§.4.4.) General. The following methods for drag computations represent, in most cases,
a compromise between state-of-the-art and ease of computation.

Programs and tables are included for computing drag over any combination of the
following:

(a) Lower atmosphere Earth
(b) Upper atmosphere Earth
(c) Mars
(d) Venus
(e) Jupiter
The programs are selected at the operator’s discretion.

When drag is to be included in trajectory computations, a distance test, which
varies with the reference system which the vehicle is in, is made. The distance to the
center of the reference body is computed and compared with center distances corresponding
to the following altitudes:

0 km - used to indicate assumption of no atmospheric drag

80 km - height corresponding to upper level of Mars’ atmosphere
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180 km - height corresponding to upper level of Venus’ atmosphere

210 km - height corresponding to upper level of Earth’'s lower atmosphere (only
nseod when the Earth’ s upper aumosphere is ignored)

1160 km - height corresponding to upper level of Earth’s upper atmosphere.

1t 81l of the distance tests fall, drag is set equal to zero. If any test passes,
drag is computed as follows.

(3 The plaretocentric altitude is computed.

(b) The altitude value used by the drag computation subroutine is the distance
between the vehicle position and the center of the reference body minus the
radius of the reference body. For Mars, Venus and Jupiter, the radius of the
reference body is taken to be constant. For the Earth, it varies with the
latitude of the vehicle and must be computed from the latitude and the
ellipticity of the Earth. Therefore, if the earth is the reference body, the
geocentric latitude is computed together with the radius based on an oblate
spherical Earth.

(c) Drag is computed using either equation (1) or (3) of paragraph 4.4.2.1, as
applicable. (Refer to paragraph 4.4.4.2.)

Yo4.4.2 Selection of Drag Equation. Equation (3) of paragraph 4.4.2.1 is used only
for the following conditions:

(a) When the computation is to be performed for the Earth’s upper atmosphere at
altitudes in excess of 100 km, with the Earth as the reference body.

(by If the computation is to be performed for the Earth’s atmosphere in the
transition region between continuum flow and free molecular flow, computations
are performed using both equations (1) and (3).

Equation (1) is used for all other cases,

Figure 4.4.-1 indicates that altitudes between 120 and 130 km would provide a
theoretically desirable transition region. Tables above 120 km are 3-dimensional, i.e.,
density is tabulated versus solar flux, local solar time, and altitude; tables below 120 km
are l-dimensional, i.e., density is plotted versus altitude only. Thus, to save computer
memory space, the range of 100 to 120 km is arbitrarily chosen as the transition region.
This choice offers an additional advantage: the discontinuity between the upper and lower

atmospheres is bridged by using table values of p * Cav only with the Harris-Priester model.

For the transition region, both drag equations plus the transition function
(paragraph 4.4.2.7) are used.

4.4.4.3 Determination of Drag Equation Parameters
4.4.4.3.1 Air Velocity. The velocity of the vehicle with respect to the air mass (V,) is
computed from the vehicle’'s inertial velocity (Vi) by subtracting from Vi (1) the velocity

of the air mass with respect to the planet, and (2) the velocity of the planet with respect
to the coordinate system. The latter comes from the ephemeris tape, the former is
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calculated. To calculate velocity of the air mass with respect to the planet, an assumption
is made that the air mass is rigidly attached to the planet and rotating with the planet.
¥ind velocities are neglected.

The magnitude of YV, the air speed, is used in the calculation of Mach number
(for the lower atmosphere). The direction of the drag vector is computed by assuming it to
be aligned with -V,.

4.4.4.3.2 Drag Coefficient. The coefficient of drag is computed as a function of Mach
number. Mach number is computed from air speed, V‘, and the speed of sound, using stored
tabular data (paragraph 4.4.4.4.3) for the speed of sound.

Mach number (M) is used as the independent variable and the coefficient of drag

(CD) computed from it. Two tables are stored, one each for M and Cp (each of 40 values),
and linear interpolat’ is used to find the CD corresponding to a given M.

4.4.4.3.3 Surface Arca.  Two values of effective surface area are provided as program
inputs: one for use in «quation (3) for free molecular flow, and one for use in equation
(1) for continuum flow.

4.4.4.3.4 Mass. Mass rates are not considered to be a part of the atmospheric models.
Schedules for changes in mass are incorporated into the powered flight analysis of the
Program,

Y.4.4.4 Tables Required

4.4.4.4.1 General. There are three sets of tables required by the Program; the first
two sets are functions of the atmospheric medium but are independent of the vehicle, whereas
the third is a function both of the vehicle and the mission but not of the medium.

The first set of tables is used to simulate the density of air at the vehicle
position in the upper atmospheric model (Harris-Priester) for the Earth. The second set is
used to simulate the density and speed-of-sound for low-level atmospheres, not only for the
Earth, but for Mars, Venus and Jupiter, as well. The third set is used, for low-level
atmospheric models, to calculate the coefficient of drag of the vehicle (zero lift is
assumed) as function of both Mach number and the shape of the vehicle (especially near the
nose).

4.4.4.4.2 Earth’'s Upper Atmosphere Tables. Five tables are needed to simulate the Earth's
upper atmosphere. Two of the tables give values of a function of three variables, tabulated
at discrete values of each of the three variables. The values of each of the three
variables at which the functions (logarithm of Harris-Priester p ¢ Cav data and logarithm of
P Cay evaluated at the poles) are tabulated, are in turn, listed in three separate tables
of argument values. The three independent variables are altitude, solar flux and local
solar time. The altitude table has 16 entries, the solar flux table 4 entries, and the
local solar time 13 entries.

The first of the two function tables lists the logarithm (base 10) of the product
of density (in units of gm/km3) and mean particle velocity in the medium (in km/sec). This
table is stored at every combination of altitude, solar flux, and local solar time and,
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therefore, has 16 x 4 x 13 = 1300 entries. The second function table lists the logarithm
(base 10) of the product of air density and mear particle velorcity but hoth are evaluated at
twilight, i.e., at the poles. This product is a functior of altitude and sciar flux, and

50 the table has 16 x 4 = 64 entries. The dats tor *the urpec ainosphere tables are taken
directly from the findings of Harris and Priester, except ior the mean particle velocity.
This quantity is computed using the methorl described in paragraph 4.4.3.6.2.

4.4.4.2.3 Lower Atmosphere Tables. The independent variable used in the lower atmosphere
tables is altitude; density and speed of sound are computed from altitude.

Three tables, 50 values each, are stored for the Earth’s lower atmosphere: altitude;
logarithm (base 10) of density; speed of sound. For a given value of altitude, a table look-
up is performed by linear interpolation in the log density and speed of sound tables. Density
is then computed by determining the value given by 10 raised to the power equal to the
logarithm of density.

Three similar tables are stored for each of the Mars anid Venus atmospheres (15
values per table). Density and speed of sound are “ound in the same manner as for the Earth.

No data are available for the Jupiter atmosphere.

The three Earth tables are obtained from U.S. Standard Atmosphere, 1962, in which
densities and speed of sound at ali aititudes helow 90 km are listed. Above 90 km, speed of
sound was calculated as proportional to the square root oif temperature divided by mean
molecular weight, both of which are available directly. The tables actually go up to 210 km
in altitude so that if it is desired to exclude the upper atmosphere, the lower atmosphere
can be extended up to 210 km.

The density data for Mars are obtained from Schilling’s "mean” Model I1I Atmosphere.
The speed of sound is obtained from temperature and a constanc mean molecular weight (same
source). The density for Venus is obtained from reference 13. The speed cof sound for Venus
was calculated from temperature and a constant molecular we:ight ontained from the same
source.

4.4.4.2.4 Vehicle Dependent Tables. The characteristics of one vehicle consists of a
surface area (1 value), a table (40 values) of Mach number (independent variable), and a
table containing the drag coefficient (dependent variable) for each Mach Number.
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4.5 SOLAR RADIATION PRESSURE

§.5.1 INTRODUCTION. Electromagnetic radiation is known to exert a pressure on an
intercepting surface. Orbiting planetary satellites having a large surface-area-to-mass
ratio are subject to perturbations due to solar radiation pressure. The value of the
vehicle’s acceleration due to solar radiation pressure is a function of the degree of solar
illumination to which the vehicle is subjected. The satellite at a given time may be in it’'s
planet’s shadow (figure 4.5-1); under this condition, the planet obscures from the satellite
part of or all of the direct sunlight. Three discrete ranges of illuminations are con-
sidered in the following analysis: full sunlight; penumbral illumination; no illumination.
(Refer to paragraph 3.1.)

%.5.2 ACCELERATION DUE TO RADIATIONR PRESSURE. The acceleration, Fs' due to
solar radiation pressure is computed from the following equation:

- A RSV
sV

where

P is an illumination factor which is a function of the amount of direct
sunlight to which the vehicle is subjected:

P =1 in full sunlight

P = 0 in umbral region

P in the penumbral region is a function of the degree of satellite
shadowing

CP is a constant related to the total energy radiated from the Sun

Rgv is the position of the Sun with respect to the vehicle

The computation of P for the penumbral region is described in paragraph 4.5.4.
It is possible that a satellite may lie within the shadows of two or more bodies, e.g., the
Earth and the Moon; in such a case, the illumination factor is properly computed by a
consideration of the relative geometry among the vehicle, the Sun, and the bodies involved.
However, an adequate approximation is obtained by computing separately the penumbral factors
(P's) for each body, and setting the total factor equal to the product of the individual
factors, i.e.,

PT=P1P2....Pn (2)
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$.5.3 SATELLITE SHADOWING. Figure 4.5-1 illustrates the geometry of satellite
shadowing, neglecting the effects of atmospheric refraction. By similar triangles, it is
seen that the umbral cone has an altitude of

hy ¥ —4—— (1)

hy & —— (2)

Atmospheric refraction causes a diffusion of the umbral and penumbral boundaries. Only the
Earth’ s atmosphere is considered dense enough to have a significant effect on these
boundaries.

Figure 4.5-2 illustrates the classical approach in defining the semidiameter of
the Earth’s umbra at the orbit of the Moon, i.e., the semidiameter s“, of the intersection
of the Barth’s umbral cone with the plane which (a) passes through the Moon at its mean
orbital radius and (b) is normal to the line between centers of the Sun and Earth. From

figure 4.5-2,

Sy = "y t g - Bg 3)

where

= lunar paraliax

3
i

M
Tg = solar parallax
Ss = solar semidiameter

An analogous expression for the semidiameter of the Earth’s penumbra, SP at the orbit of
the Moon may be derived, yielding

Sp = my + Mg * Sg (4)
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Figure 4.5-2.

n
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Semidiameter of Earth’s Umbra At Orbit of Moon
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Careful observations of lunareclipses have shown that su and 5, are actually
about 2% greater than the values given by equations (3) and (4), respectively. Hence,

|

Su' = 1.02 (my t Mg - Sg) (5)

0
1]

1.02 (my + 7g + 8g) (6)

These enlargements arise from refraction due to the Earth’ s atmosphere (see references 14
and 15). The geometry of both the umbra and penumbra is greatly complicated by the pre-
sence of the Earth’s atmosphere. The simplest corrections that can be made are to enlarge
the central angles of the umbral and penumbral cones.

Criteria will now be developed to determine whether or not a vehicle lies in
either of the two shadow zones.

For the umbral region, the planetocentric position P of the cone’s apex (figure
4.5-3) is given by

RSP
P=h; — (N
RSP
Let
hy
hy,' =— (8)
u K
POSITION OF
SATELLITE

APEX OF
. UMBRAL

PLANET CONE

Figure 4.5-3. Umbral Region Geometry
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where

K = 1.02 for the Earth

=
|

= 1 for all other planets

From figure 4.5-3, it is seen that the cosine of the cone's central half-angle is equal to
sin a:

cos A =~ sin a (9
where a includes the effects of refraction.

It can be shown that

cos A = —mmmmm (10)

If R (figure 4.5-3) represents the satellite’s planetocentric position, and if the
scalar product R + P is positive, then the satellite is on the side of the planet away from
the Sun. Vehicle position with respect to P is given by equation (11)

R" =R -P (11)

The cosine of the angle, 7, between R’ and -P is obtained from the definition of a vector
dot product:

(R - Py « Rgp
IR - P| R,

cos Y = - (12)

It follows, then, that the satellite lies within the umbral region if cos ¥y is positive, andif
|cos ] > | cos Al. (13)

For the penumbral region, using a similar coordinate system as shown in figure 4.5-4, the
position of the cone’s apex, Q, is obtained from

R
SP
0= hp -E—_- (14)
[Ree|
Let
hy' = 21 (15)
P K

1.02 for Earth
1.0 for all other planets

i
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POSITION OF
SATELLITE
APEX OF
CONE
Figure 4.5-4. Penumbral Region Geometry
L
Then, hp
cos B = ———————, (16)

Again, if the scalar product, R * P, is positive, the satellite is on the shadowed side of
the planet. Vehicle position with respect to Q is computed from

R'" =R - 0. (17
The cosine of the angle between R and -() is obtained from
_(R=0) - Rep
cos ¥ IR - 0] Reg (18)
The satellite lies in the penumbral region if cos 7y is positive, and if
[cos 'yl > lcos BI (19)

The foregoing paragraphs have dealt with the problem of satellite shadowing when
the Sun is obscured by the body of the object about which the satellite is orbiting. 1In
the Earth-Moon system, another source of shadowing arises, namely, natural eclipses of the
Sun by one of the bodies in the system as seen from the other body. Fortunately, the compli-
cated geometry of eclipses need not be computed for the purpose of determining satellite
shadowing. The foregoing analysis may be used to account for eclipses. If the satellite
is orbiting the Earth, first a test is made to determine whether or not the vehicle lies in
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the Earth’s shadow; if it does not, a second test is made to see it if lies in the Moon's
shadow. Similarly, for a satellite orbiting the Moon, first a test is made to determine if

the satellite lies in the Moon’s shadow; then a second test is made to determine if it lies
in the Earth’s shadow.

4.5.4 PENUMBRAL ILLUMINATION FACTOR. To a satellite situated in the penumbra of a
planet, the Sun appears as a lune formed by the solar disc and a limb of the planet. (This
condition is true, of course, only if the satellite is sufficiently close to the planet; in
the limit, as the satellite recedes from the planet, the apparent diameter of the latter
becomes so small that the planet appears to be a small speck on the solar disc.) Consequently,
the satellite in relatively close proximity to the planet is illuminated by some fraction of
the sun’s available radiation, the fraction being a function of the satellite’s location

within the penumbral region. An expression for this penumbral illumination factor is
derived in the following paragraphs.

Consider a satellite at an altitude h above a planet’'s surface. In this instance,
nplanet” means any ponderable body in the solar system. To compute the solid angle
subtended by the planet from this position, the geometry of figure 4.5-5 is used. From the
diagram, it can be shown that

o
1]

{h (h + 2Rp) (1
Rp Jh (h + 2Rp)

a - (2)
(Rp * h)

hRp

(3
(Rp + h) )

The angular area of a spherical disc or cap such as the planetary disc shown in
figure 4.5-5 is given by the quantity 27 H/R

where

=
|

= depth of disc

-
|

= radius of sphere of which disc is a part

The apparent angular area of the planet’s disc is given by

_2m fc - (b +m)

6 4
P - (4)

Substituting equations (32) and (34) into (35) yields

[E(n+ 2Rp) |
bp =2m|1 - (5)
(Rp + h)
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Similarly, the solid angle subtended by VEHICLE
the solar disc from the same position is, POSITION
approximately,
Rg 1) 2
bg = 2m|1 - |1- =— (6)
SV —

PLANETARY
DISC

in which Rsv is the distance between the
Sun and vehicle and Rs is the solar
radius.

Since RSv >> RS,

2 2 PLANET
Rg - 1 [ Rs LANE
1 - — VA TR P (7)
Rsy 2 |Rgy

Figure 4.5-5. Planetary Disc

Therefore,

~ [ Rg |2

95 = 7| — (8)
Rsv
Similarly, if h becomes large with respect to RP, equation (5) may be replaced by
2
" Rp

9P ~ 77 (9)

Rp+h
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Equations (5) and (8) establish the relative sizes of the planetary and solar
discs. ¢+ now remains to compute the percentage obscuration of the former by the latter
when the vehicle’s position is given. The geometry of this problem is shown in figure 4.5-6.
A sphere having a radius greater than Rgy + Rs is constructed with the vehicle position as
center. Two caps, representing the solar and planetary apparent angular areas, are projected
onto the sphere. From the diagram,

Rsy = Rgp + R 10
where

Rsv = position of vehicle with respect to the Sun

Rsp = position of planet with respect to the Sun

=
|

= position of vehicle with respect to planet

The central angle between the centers of the caps is given by

. +
cos B¢ = R - (Rsp * R) (11)
R [Rgp + R
i
0<6, 5; (12)

Figure 4.5-7 illustrates the geometry of the intersection between the two caps.
In order to simplify the integration in computing the area of the exposed solar disc, a
great circle will be passed through the two points of intersection; this circle will be used

to define one of the limits of integration. For the calculations to follow, three coordinate
systems are employed:

a. A system (figure 4.5-8) for the cap representing the Sun’s disc
b. A system for the cap representing the planet’s disc
c. A system for the great circle

All three reference frames are taken to have in common the same y-axis and center of
coordinates. Figure 4.5-9 shows the relationships among the three systems. Taking the first
system (a) as primary, the second system (b) is related to it by

[
= . .
X x cos 6, z sin 6

N
|

=z cos 6, + x sin 6 (13)

-~
1"

y
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PROJECTION
SPHERE

GREAT CIRCLE
THROUGH POINTS
OF INTERSECTION

Figure 4.5-7.

where

and the third system by
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DESIRED LUNE

SMALL CIRCLE DUE
TO PROJECTED
SOLAR DISC

SMALL CIRCLE DUE
TO PROJECTED
PLANETARY DISC

Solar-Planetary Disc Intersection

normal to the planet’s disc

:xsinﬁ-‘rzcos@,\
(¢4 1§ 4

:zsianG-xcos@

b (14)
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z
NOTE
Z AXIS IS NORMAL
TO SOLAR DISC
AN
7 ~
~
_ - ~ PROJECTED SOLAR DISC
_ ~
~ A
CENTER OF >
PROJECTION
SPHERE
X Y

Figure 4.5-8. Orientation of Solar Disc’s Coordinate Systenm
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Y,Y,Y

Figure 4.5-9. Coordinate Systems Used in Computations
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The set of equations representing the small circle of the Sun’s cap is
x2 + y2 + 22 = g2 (15)
z = (a-H) (16)
where
a is the radius of the sphere
H is the height of the cap
Eliminating z from equation (15),
x2 + y2 = H (22 - H) (17)
Similarly, the small circle of the planet’s cap is given by
(x'y2 + y2 = B (2a - H') (18)
Substituting equations (13) into (18) yields

(x cos 6, - z sin 80)2 + y2 = ' (2a - H") (19)

and

z' = (a-H') = zcos 6, + x sin 6 (20}

Substituting equation (16) into (20) and solving for x:

a (1 - cos 90) - (K - H cos 8,)
x. = 2n
P sin 90

where
Xp = x coordinate of point of intersection shown in figure 4.5-8
Solving for y2 from equation (19)

’

2
H' (2a - H') sin 26, - [(a - H') cos 6, - (a - H)]
ypz = (22)

i 2
sin Gc
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and

zP=iJaz-xP3-yP2=(a-H) (23)

where

Yp and Zy are the y and z coordinates of the point of intersection

For the great circle passing through the intersections of the caps, z" = 0, so that,
from equations (14),

tan BG= (24)

N |

Evaluating equation (24) at the coordinates of the intersection point:

& (1 - cos 6.) - (H - H cos 6,)

t e, =
an “g (2 - H) sin 6 )

¥l < 6 < m
==z = 26
2 G 2 (26)
From figure 4.5-6, the angular radius of the solar cap is
R
B
(/] = tan~! — 27
R
s RSV
Similarly, the angular radius of the planetary cap is given by
ol “
6. = tan~! ° = tan"! i’
- tan - n . (28)
" h +b h (h + 2Ry)

The range for 90, the angular distance between cap centers can therefore be narrowed to

0<6,< (Bg. * 6

c Rg P

since the sum of 9& + 6, represents the case where the caps are tangent to each other.
s

Rp
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Although in the example selected for the previous analysis the solar and planetary
discs intersected, it is also possible that (a) they are tangent to each other, or (b) the
planetary cap is within the solar cap. (The latter condition arises when the satellite is
relatively far from the planet.) To determine whether or not intersections exist, the value
of yp2 as given in equation (22) may be used as a discriminant:

a. If yP2 > 0, two intersections exist,

b. If yP2 = 0, the two caps are tangent, 6, = 9RS+ QRP' and there is no obscuration,

c. If yp2 < 0, the two caps do not intersect and the obscured area is obtained by
subtracting the apparent planetary area from the apparent solar area.

Procedures are now developed for computing the percentage obscuration in condition a and c.

The area indicated by the cross-hatched surface (ABC) in figure 4.5-10 corresponds
to half of either of the two lunes (figure 4.5-7) formed by the intersection of the great
circle and the solar and planetary caps. A general expression will now be developed for
the area of this surface. This expression will then be used to compute the areas of the
two lunes indicated in figure 4.5-7.

The area of the over-all lune of which the shaded area indicated in figure 4.5-10
is half is given by

¢0 Hb (¢)
Ag ~ 2a? f a6 sin 6 d6 (29)

where

a is the radius of the sphere

¢ is the angular displacement, in the x-y plane, from the x axis, positive in the
counterclockwise direction

Oq (@) is the angular displacement of side AC from the z-axis, positive in the counter-
clockwise direction

Hb(¢) is the angular displacement of side BC from the z-axis, positive in the counter-
clockwise direction.

Performing the first indicated integration,

¢
Ag = 2a? j {cos 6, (¢$) - cos 6, (P} do (30)

o)

The maximum area, i.e., when the great circle lies in the x-z plane, which this integral
could yield is one-half of the total area of the cap.
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SMALL CIRCLE OF
PROJECTED DISC

GREAT CIRCLE

Figure 4.5-10. Area of Spherical Lune
From equation (17), the expression for the small circle of the solar disc is
x2+ y2=H (22 - H) (31)

In polar coordinates,

= a sin @ cos ¢

»
t

= a sin 6 sin ¢ (32)

¢
|

= a cos O

N
|
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Substituting for x and y in (31):

H(2a - H)

sin 20 cos 3¢} + sin 39, sin %p =
2
e

For the case of the small circle & is always equal to Gb. Therefore,

JH(2& - H)

Bb (¢) = sin~1 "

The equation of the great circle is

(x")2 + y2 = a2
Substituting from (15),
(x sin 96 + z cos 96)2 + y2 = g3,
From (25),

tan GG

N|n

Substitution of (36) into (35) yields

y2 cos 26, + 22 = a2 cos 26,
Inserting the polar-coordinate relationships from (32):
sin 20 sin 2¢ cos 2BG + cos 20 = cos 26G
For the great circle 6 is a function of @, i.e., 6, (). Therefore,

sin 96

6, (&) = 8in~1

{1 - sin 24 cos 29G

Using the limits given by equations (33) and (39) in the integral of equation (30),
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(33)

(34)

(35)

(36)

(37)

(38)

(39)



¢0 sin GG
Ag = 2a3f cos | sin-1 do
° 41 - sin 2¢ cos 296
J .
- 2;%0 cos [sin'l m:l
2
a

Rewriting equation (40),

¢
° cos
Ag = 2a2 cos 66 j~ ¢ 4 - 2a (a - H) &,
o N1 - sin %) cos 26,
Rearranging the integral in (38),
cos ¢ d¢ _ cos ¢ do
cos QGJ‘ —f
N1 - sin %p cos 20, Isec 20, - sin 2¢
_ dx _ -1 X
Y
Je2 - 12 c
vhere
x = sin ¢
c < sec '96
Therefore,

Ag = 282 sin~1 [sin ¢, cos O ] -8 (a-H &

NOTE: In the computation of Ag the definition of ¢'o (figure
4.5-10) limits it to the range 0 _§¢° < 7/2. Therefore, if ¢o
is actually in the second quadrant, use (qSo - 711/2) for the
evaluation of equation (43).

PERTURBATIONS

(40)

(41)

(42)

(43)
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From figure 4.5-10, it is evident that

Yp

2 2
Xp® t Yp

it

sin @,

Xp

‘JX2+yP2

P

i

cos ¢0

where X, and y, are obtained from equations (21) and (22). respectively.

The positive sign
is taken for the square root when computing Yp. In addition,

xp2 + yp2 = H (28 - H) (46)
For the planetary cap,
A, = 2a2 sin-1 [}1n #,' cos GGCJ - 2a (a - H') &' (47)
where
xI
tan 66' = ;; (48)

and ¢5' is limited, for the evaluation of equation (47), to values between 0 and 7/2.
Taking the values of the intersection point from equations (21) and (23), and transforming
them to the planetary cap’s coordinate system (x’, y', z') by equations (13),

[
tan 96' - (H H' cos BC) a (1 cos 6,) (49)
(a - H') sin 6,
T T (50)
2= 6 =9
Yp
sin ¢ ' =
° JH' (28 - H') (51)
xp cos 6, - (a - H) sin 6,
cos ¢0' = (52)

JH' (22 - B')
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From the geometry of the intersection of the solar and planetary caps (figures 4.5-7 through

4.5-8), 1t can be shown that the effective projected area of the solar cap, Asc' varies with
the quadrant of ¢, and ¢°' in the manner shown in table 4.5-1.

- Table 4.5-1. Table for Computation of Agc

‘ %o o Asc
(quadrant) (quadrant) Equals
First Second 2mel-Ag
Second Second Ag
Pirst Pirst Ag
Second Pirst 2maH-Ag

The area of the exposed solar-disc is given by
Agx = Agc - Ap (53)

The forgoing calculations have been made on the basis of a sphere of radius a; these results
are now normalized by setting a = 1. Normalizing the remaining quantities,

e Rg ] 2
ﬁ=_s.=1- 1-(—-—1 (54)
w G 1- {h (b + 2Rp)
- -_— T e = 55
a 2n (Rp + h) o3

The penumbral illumination factor is computed from

p = X2 (56)
65

For the case where yn2 < 0, the illumination factor is computed from

6
p:l-P. (57

Ep
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SECTION 5
STATISTICAL COMPUTATIONS

5.1  INTRODUCTION

The primary function of an orbit determination program is in compute a best
estimate of spacecraft position and velocity from observations. In making these computations,
the meaning of "best estimate™ is defined in some statistical sense. as, for example, mini-
num variance or least squares. Used as a scientific tool. the program can also update
-stimates of biases occurring in the dynamic and observational! models.

Statistical estimates are obtained for the linearized components of the state | T
victor. The most,elementary state vector is composed of the six elements given by [6R SR} .
in which 8R and &R represent differential displacements from some nominal trajectory. In
practice, the infinitesimal differentials are replaced by finite increments, so that

[AR AR]T ¥ [5R sR)" (1)

> ing more compact notation to represent the state vector, let
< T
Ax = [AR AR] (2

Linearization is also applied to the observations. For each data time, an ohservation is
computed from the corresponding point on the nominal trajectory. A vector of observation
residuals is formed from

AY = Otcr - Ocour (2,
Here
s r 3 .
OCOHP is the vector of computed observations;
OACT is the vector of actual observations.

“r terms of these definitions, statistical processing entails inferring /X given the
components of Ay,
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For all types of statistical estimation in which linearized variables are employed,
three important matrices occur: ®, the state transition matrix; M, the matrix of observation
partial derivatives; and P, the variance-covariance (usually called covariance) matrix of
the state vector components. For the state vector of equation (2), the transition matrix
relates the state at time t to the state at time to:

Ax(t) = &(t, t) Ax(t,) (4)

The matrix M describes the deterministic relationship between small changes in the state
vector and the corresponding changes in the vector of residuals:

Ay(t)y = M(t) Ax(t) (5)

A full ireatment of this matrix is given in paragraph 6.3. Turning finally to the covariance
matrix, its structure is an array of elements given by:

2 . . L] L] L]
Ul pxyaxay px 'O'xO" pl zoxcz
2 L] . . .
Pys%y® Ty Pye%y7s Pysyz
P = (6)
L ] . * . L ] . . L] . 2
bPZXUZU! pzycz‘; pz zazaz UZ -
where
012 = the variance of the gth component

Pyy = Pyq = the correlation factor between the 1*® and jth
components. Because the correlation between Xy
and x, is the same as the correlation between x
and Xy the covariance matrix is symmetrical.

By augmenting the state vector, it is possible to obtain estimates of dynamical
and observational biases. Dynamical biases are those parameters which influence a vehicle's
orbital motion, and include biases in all gravitational quantities and in the thrust profile
of the spacecraft. Observational biases, on the other hand, include those parameters such
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as uncertainties in station location or in the speed of light which corrupt the data and
contribute to errors in the knowledge of the vehicle state. Both classifications of bias
are processed in the same manner in the statistical estimation procedure. The form of the
.:igmented state vector is

T

[5R SR 5B, 5B_] (7

in which SB is a vector of dynamical biases and 3B a vector of observational biases.
These bias parameters have also been linearized, so that 5B, and SBO represent differential
offsets from a set of nominal values.

For SXE, the state transition matrix becomes

Bt t) . B(t. t) 3 0]
S R S
P (L. t)) = 0 ! I, : 0 (8)
...... e eop - -
B 0 : 0 ; Io_

The partition $(t, t o) is defined by equation (4). @h(t, t,) is a 6 x k matrix relating

t: - 21fferentials of position and velocity to SB The null matrix in the upper right
~zrtition has dimension 6 x 4, and relates position and velocity to the observational biases.
jimensions k and 4 are the number of dynamical parameters and the number of observational
rrameters, respectively. Id is a k x k unit matrix and I0 is an £ x £ unit matrix. The
remaining null matrices show that no relation exists between the two classifications of

rias, or between the biases and AX. Overall dimension for @a(t. t,)) is (6 + k + £y x
8tk + 4,

Similarly, the M matrix is expanded to be compatible with the augmented state
vector:

Moty = Mty 0 M (D], (9)

M{t) is defined by equation (5); the null matrix relates the dynamical biases to the obser-
vations and has dimension n x k; I (t) is a matrix of partial derivatives relating the
observational biases to Ay and has dinen51on n x ©. The quantity n is the number of obser-
vation types.
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Augmenting the covariance matrix,

P { PXd | PXO
el - d oo na
Py Pax Py : Pio (10
-....-'...........-;.-_..-
! |
]
_Pox i Poa 1 Po_
]

where P is defined by equation (6), and Pd and Po are the covariance matrices for the dynam-
ical biases and observational biases, respectively. P has dimensions 6 x 6; Pd is k x k;
Po is 4 x 4. The partitions PXd' PXo' and Pdo contain, respectively, the covariances be-
tween &x and the dynamical parameters, between AX and the observational parameters, and be-
tween the two types of parameters themselves. Pa is symmetric and has dimensions (6 tk +£)

x (6 tk +4).
5.2 THE GODDARD PARAMETERS

Reference 16 shows that differential correction matrices computed for state vectors
like AX become singular after a relatively short time. It is further shown in the reference
that the optimum set of variables is one in which only one component in the set depends upon
the energy of the orbit. Such a set has been developed, and, in this Program, the vehicle
state is described by six quantities called the Goddard (or a) parameters. The state transi-
tion matrix ®(t, to) is replaced by the parameter transition matrix ¥(t, to), the matrix
of observation partial derivatives M(t) becomes the array of derivatives N(t), and the state
variable covariance matrix P(t) is transformed into the parameter covariance matrix Q(t).

The six differential a - parameters are defined as follows (reference 17):
Aa.: a small rotation of R about R in such a way

1
as to keep R « R a constant.

Aa2: a small rotation of R about R in such a way
as to keep R - R a constant.

Aa3. a small rotation og R and R simultaneously
about H = R x R, the angular momentum
vector.

Aa4: a small change in 1/a, where a is the major

semiaxis of the osculating two-body orbit.
This parameter is the only one of the set
affected by energy.

5-4
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Aa,:  a small change in R, the magnitude of R,
such that a and R * R remain invariant.

Aasz a small change in R - R caused by a small
- rotation of R about H.

. The first three differential parameters leave the shape and size of the orbit invariant and
change only its orientation in space, whereas the last three affect the orbital configura-
tion. .

To use the a - parameters in statistical estimatibn. it is necessary to establish
their relationship with the conventional state vector AX, and then to establish relations
between ® and ¥, M and N, and between P and Q. The fundamental transformation is

Ax = 8 Aa, (11)

-a being the vector of differential parameters. By definition, the parameter transition
natrix relates the new linearized variables at two different times:

Da(t) = ¥(t, t)) Da(t)) (12)

Between ¥ and ®, the following transformation exists:

®t, t,) = sty ¥ee, t) st

° ). (13)

o
covariance matrix for the parameters, Q, is related to P by
P(t) = S(t) Q(t) 8T (t), (14)

=r < the matrix of observation partial derivatives, N, is related to M by

N(t) = M(t) S(t). (15)

Augmentation of the transforeation matrix S is simply



ANALYTICAL BASIS

where S is defined by equation (11). The inverse of Sa is

s-1

!
i
!

0

S -1 - _——_+———

a
0

I

(17)

The matrix S is a point transformation entirely expressable in terms of spacecraft

position and velocity at some time.

[ H | o | HxR | HxR l;m(HxR): R
Vo o, B 0 2am? LR
R |

s=lmomm A m oo
| . l -
H | HxR | R I
N e A
o | I [ | 2V ,
- |
VH
- — | 0 )
n3 [
——— L —_— =
|
I RH
0 —
| W2
—— e
| .
-1 i HWxR
s-1 = 0 |
, H v2
—————— -
R | R
e o = e — =
R | 2R
R3 : K
——— o —f— —a— —
R |
— | 0
| R ! _

ub(1 - R/a) (H xR)7]

(RVH) 2

(18)

(19)
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In equations (18) and (19),

v = |R] - (20a)
H = |H| (20b)
H=RxR (20c¢)
D=R-R | (20d)

It is assumed in the Program that a two-body state transition matrix is suffi-
ciently accurate for statistical estimation. With this assumption, ¥ may be expressed in

closed form.

v v i
—_t -— 8 0 () 0 0
vo RO
|
R R l
- —t — & ' 0 0 0
° R, |
1
|
L] 0 1 | 8'3,4 33'5 9,3'6
Yt tp=fFF————————— A (21)
|
0 0 0 | 4 8y 5 R T
|
0 0 o | 0 1 0
0 0 0 I £ a Eif

where f and g, f and g are functions describing motion on a Keplerian orbit as defined by
equations (1) and (2) of parsgraph 3.2.2. The subscript "0" identifies quantities pertain-
ing to the initial time to; all other quantities are associated with the time t. This
closed-form formulation is computationazlly more convenient than having to calculate the
elements of ¢ from the variational equations or by the secant method.

5-7
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2
_Hlg-1 Rt 'y
83,4 - -—|%¢e- Db, 22,
v2| =r? I g2 LR
- #’fH . DO /J,
a, g T —— (&8t |~ & -D,
L] 2 2 R
2(VVy) H
{u B2 . Do By )
+ R, (F3) +__.__[(F3) +F2]
2r3 v2 o
+ B2 (- F. +F. - + 2 4 p. (F)? 29,
(- 3 6 5 Fl Fz (Fz) . ( 3) )
_ont R 1R s, p D, R |[ue
° o] o]
(24)
2 a3
_ 9 Do Ry D28
8, 5 o - R, /321- B 22_ 5,
' ? \m p
4
+Ro ﬂ? z4+ s +,35 26 (25)
\I
2
182 RO DQR'O
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6,5 1 . . \
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D
ol B D, B ) "
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STATISTICAL CONPUTATION

(27a)

(27b)

(27¢)

(274d)

(27e)

(27f£)

(27g)

(28)

where X 18 Herrick's viriable {(proportional to differential eccentric anomaly), and a is the
The remaining functions are defined as follows:

major semiaxis of the orbit.

™M
1]

™M
1]

M
1]

-aa=-x2

83

3
»

(1 +2F,)

(29)

(30a)

(30h)

(30c)

(304d)
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3F,
= — 2
> 5 3F5 - 2(Fy) (30e)
2, = ik s F F (30f)
S, T (F,)2 (31a)
1 3
S, = F, * F, (31h)
Py
53 :__2._ - FS - Fl . F3 (31(‘)
S, ©F o (31d)
4 5 2 2
Sg = 26 (31e)
2
S, = s 2F v (311)
6 9 7 2

5.3 MINIMUM VARIANCE FILTER

Having available the necessary linearized observations, a state vector, and the
associated matrices ®, M, and P (or ¥, N, and Q), by what means shall a statistical estimate
of the state vector components be obtained? One important estimator is the minimum variance
filter, for which the optimum estimate is expressed by

Ax = K by, (32)
K being the optimal filter. The error, €, in the estimate is
€ = Ax - K by, (33)
T

and the covariance of this error is the expectation of €€ :

P = E(eeT) (34)
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Since the variances of the error components are given by the trace of P, a minimum variance

‘estimate is obtained by solving for those components of AxX which minimize tr(P). Following

Battin (reference 18),

do2 = d E(eT €) = dltr(P)] = tr [d P] (35)

where "tr" indicates trace. Substituting (33) and (34) into (35) and setting o2 equal to
zero,

do? =tr {d[E&x ATy -EAx AyTHKT -k E(Ay AxT) +k E(Ay AyTy k7] )} = o,

(36
or,
2 tr [k EQy AyT) - EAx AyT)] 4 kT = o. (37)
Evuation (37) must be valid for arbitrary d KT; consequently,
K = Edx AyTy [Edy AyTy] : (38)
To evaluate E(/X AyT), consider the relation
Ay = M Ax + e (39)

where M is the matrix of partial derivatives relating the observations to the state, and €
is the vector of errors in the semsors. Then,

E(Ox AyTy = E(Ax AxT) MT = p T (40)

Using equation (39) again, E(AX AyT) may be computed:

E(Ay AyT) = wPNT + &2 (41)
Hence, the optimum filter is given by
_ T T 2771
K=P M [Mp uT + ¢2] (42)

Employing the Goddard parameters for statistical updating,

5-11
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Ax = L Ay (43a)

-1
L= qNT [NaNT + ¢2] (43hH)

In the minimum variance procedure, data are processed sequentially, i.e., one data
point at a time. There may be several observations at a data point, but they are all simul-
taneous. The estimate of the state, therefore, depends upon a priori knowledge of the state
and ‘ts covariance matrix at some initial time, and upon the data gathered between that time
and the last data point. Consider a typical minimum variance sequence using, for convenience,
conventional state variables rather than the a - parameters. Assume that at to. the covar-
iance matrix is P(t_ ), and that Ro and RO are known. Assume also that the first data point
occurs at tl. Positign and velocity are updated by integrating the equations of motion from
t, to t, with Ro and Ro as initial conditions. Between data points, P is updated by means
of the state transition matrix:

P(t;) =&t t) P(t) ®T(t,, t)) (44)

The matrix P(t;) is used in equation (42) to obtain the optimum filter, which, in turn, is
used to calculate the optimum estimate of the state from equation (32). A new value for
this matrix is computed from

+ -
P(t;) = (I - KM) P(t)) (45)

where I is a unit matrix of proper deminsionality, and where the minus and plus superscripts
refer to instants just before and just after the processing of data, respectively. Time tl
now becomes the initial point for the updating process, and the steps just outlined are re-
peated. Equation (44) may be derived by computing the expectation of AX(t) using the updated
linearized state vector

Ax(ty) = Pty to) AX(tp). (46)

Equation (45) is obtained by forming the expectation of €, where ¢ is given by equation (33).

Minimum variance estimation is especially useful in error analyses. In this appli-
cation, a nominal trajectory is specified together with data points along the orbit. An
initial estimate of the covariance matrix is needed as well as a measure of the data quality
at each point. The matrix P is then propagated from data point to data point, using equation
(44) between data times, and equation (45) at a data time. No real data are required and no
observations need be computed.

In an earlier version of this Program, an error analysis mode was developed in
which P, the covariance matrix of AX, is propagated, but in which the effects of dvnamical
and observational biases on P are accounted for by additive terms. Between data points,
then, equation (44) becomes
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P(ty) = &ty t)) Pty ®Tt,. t) + ety t) (47)
i which O(tl, to) is a matrix dependent upon the dynamical biases. At a data point, P
is updated by

+

P(t)) = (I - kM) Pty + [(ty), (48)

where Fktl) is a matrix depending upon both the dynamical and observational biases. Besides
its employment in error analyses, this technique has also been used for processing data where
it is important to account for the effect of biases but not necessary to compute their
values.

5.4  BAYES' ESTIMATION

Consider the normal equations in the classical least-squares formulation:

M, Ax, = Ay, - e,

1
M, Ax, = Ay, - e,
. (49)
M, Ax, = Ayp - e,

érdinarily, in orbit determination, each equation in the set obtains at a given time so that
tne p measurements may be considered data points in time. Each vector Ayi contains up to

a1 components; the dimensions of éx‘, on the other hand, are (6 + k + £) x 1. Compressin~
equation (49) into compact notation,

B Ax, = Ay - e (50)
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where
T
- T, T . T
B = [M" M, M, ]
Ay = [y T Ay T . o o Ay ol (51)
y Yi 2Yy Yo
T
= T T . . . T
e [el e, e, i

For least squares, the optimization criterion requires the choice of components for Axa
which minimize the scalar

e? - eTe= (BOx, - AT (B Ax, - 2y) (52)

Taking partial derivatives of e? with respect to the components of Axﬂ and setting the re-
sult to zero:

2 - T T ! =
V. e (B Ox, - Ay)" B 1+ BY(B Ox, - Ay) = 0, (53)
where the operator V; implies taking the gradient in the vector space defined by Axa. Since
T - T A 1T
(B &x, - ByyT B = [BT(B O&x, - Ay, (54a)

equation (53) states that the sum of a vector and it transpose are ze:o Consequently, tiun
vector itself is identically zero:

BT B Ax, = 8T Ay (54h)
The optimum estimate in the least-squares sense is, then,

- T -1 T
Axa = (B" B) BY Ay. (55)

The least-square estimate of equation (55) makes no use of a priori information.
In orbit determination, such information is usually available in the form of an initial
covariance matrix, and the Program can employ this matrix in a least-square calculation
culled Bayes' estimation. One form of Bayes' theorem relates the conditional probability

“n

-14
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distribution of the initial state, given the data, to the conditional probability distri-
bution of the data, given the initial state, and the distributions of the data and the
initial state:

p(By/Bx, (0)) p(Ax,(0))

p(Ax_(0)/Ay) = (56)
& y p(Ay)

In equation (56), Ax.(O) is the initial state vector. The optimization criterion is again
the minimization of ez; expressing this minimization in terms of Bayes' theorem requires
finding the components of Ax.(O) which correspond to the mean of the conditional distribu-
tion p@ﬁxa(O)/Ay). Since the distributions are assumed to be Gaussian, the distribution of
the initial state, within a multiplicative factor, is

1
p(Ax, (0)) = exp - —{Ax,T(0) P-1(0) Ox,}, (5%
2

P 0) being the covariance matrix of Ax‘(O). To find p(dy), write equation (50) as
Ay = B ¢, Ox (0) * e, (58)
where
T

=T ¢T. . .8T
¢ = [T ¢, ¢, (59)

kech @1 is the state transition matrix from t = to tot*= ti' The covariance matrix for
&y is the expectation

EQQy &yTy =Y =8¢, P0o) & T BT + e (60)

Hence, within a multiplication factor, the distribution of Ay is

1
p(dy) = exp -—Z—{AyT Y ! Ay} (61)

The conditional distribution of Ay given Ax‘(O) is simply proportional to the distribution
of the cobservational errors:

1 -1
p(By/bx, (0)) = exp - —{eT (e?) " e} (62)
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Substituting equations (57), (61), and (62) into equation (56),

T

1 .
p(Bx, (0)/Ay) = exp --Z—{AxaT(O) P 10 Ax, (0) veTe?yle AyT y-b Ay),
(63)

Substituting for Y from equation (60),

1 -1 .
p(8x, (0)/Dy)=exp ~E—{{AxaT(0) -AyT DT R ()] [P’ (0)] [Ax (0) - P'(0) D Ayl}

(64)
where
, -1 -1 T oor rogy-1
(P’ (0)] = [P(o)] + &T BT [e2] B &, (65)
-1
p = T BT [e2] (66)

The optimal estimate for Axa(O) is that vector which gives the mean value of p(ﬁxa(O)AAy)t
Ax,(0) = P'(0) D Ay. (67)

In the Program, P'(0) and D are computed recursively from the following formulae:

il eyl T o T o271
('] =, ) + & T8T [e?] B, 9 (68)
= T T
D, =D, , + & " B, " Ny, (60
D being defined by
D, = b, By (70

At the last point in the data batch, (Pi']'1 is inverted and multiplied into Dp to give the
optimal estimate of the state:

1

Ax(0) = P, Dp (7T
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Equation (67) gives the updated estimate of the initial state vector and equation
(65) gives the updated estimate of the initial covariance matrix. The problem arises, then,
of obtaining updated estimates of P and Ax‘ at some other time, given the initial estimates.
Elements of the stste vector pertaining to dynamical and observational biases are constants
and so are invarisnt in time. To obtain updated estimates of position and velocity, one may
use the optimal estimates of the initial conditions to integrate forward to any desired time
point, or less accurately, the differential elements of the initial state vector may be
transferred forward by the state transition matrix. As shown by equation (44), the covari-
ance matrix may also be updated by means of the transition matrix. It is interesting to
note that if the elements of [P(O)}'l are set equal to zero, the resulting estimate is exactly
that given by a weighted least-squares regression.

Another type of Bayes' estimate employs recursive calculations which give updated
estimates of Axa and P at each data time. In this procedure, the size of the data batch is
limited to one data point. The covariance matrix is computed from

-1
P'(t) = P(t) - P(t) T uT [mMP(t)MT + e2] ~ MdP(t),

and the optimal estimate of the state vector from
- -1
Ax, (t) = P'(t) 8T N7 [e2] ~ Ay

This recursive form of Bayes' estimate has been shown to be equivalent to the Kalman filter
(reference 19). The equivalency, however, does not imply that the computational methods
are the same, as can be seen by comparing equation (73) with equations (32) and (42).

5.5  BIAS ERRORS

Augmentation of the state vector and its associated matrices to accommodate dynam-
ical and observational biases has been discussed in paragraph 5.1. It remains for this
paragraph to tabulate the biases included in the program and to describe some of the calcu-
lations peculiar to the estimation of these parameters.

The dynamic biases determined by the Program are the uncertainties in the

following:

v

e Products of the universal gravitational constant and the masses of the Earth,
Sun, Moon, Mars, Venus, Jupiter and Saturn

® Area-to-mass ratio used in computing radiation pressure
e Magnitude of the solar flux
e Area-to-mass ratio used in computing air drag

e The lunar gravitational coefficients, A, B and C
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e Twenty-four of the Earth's gravitational coefficients of the type Cn n

@ Fifteen of the Earth's gravitational coefficients of the type Sn "
o Eighteen coefficients describing thrust acceleration
e The starting and ending times of a thrust period

The observational biases determined by the Program are the uncertainties in the
following:

o Geodetic net corrections, fAu, Av and Aw

e Station orientation angles, Aee, Aen, De,

o Parameters of the refraction correction model:

n,: index of refraction at the Earth's surface;

h, altitude above Earth;

h_, altitude of bottom of Fz layer;
h_, altitude of maximum density of F2 layer;
Py maximum electron density of Fz layer.

® Measurement timing, At
@ The velocity of light, Ac.

The partition @d(t, to) (see equation (8)) of the augmented state transition
matrix is obtained by means of the secant method. This partition is composed of elements
which relate the differentials of position and velocity to the differential dynamic biases.
Consequently, numerical derivatives are computed because the variables are not related by
a differentiable analytic expression.

Paragraph 6.3 contains the partitions for augmenting the M matrix. Uncertainties
in the observations are added to the computed ohservations of paragraph 6.2.

5.6  POWERED FLIGHT PARAMETERS

5.6.1 GENERAL. As developed in paragraph 3.4, a nominal trajectory is computed dur-
ing powered flight from the time series solution to equation (3) of that paragraph. To
obtain this solution, it is assumed that the thrust acceleration, Pa, is expressible as a
polynomial in time. In processing data during a thrust period, uncertainties in the charac-
teristics of the thrust polynomial are included as bias states. These characteristics are
the time of the start of burn, the time of the end of burn, and the coefficients of the
thrust acceleration polynomial.
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It is assumed that the state transition matrix of the nominal trajectory is a
sufficiently close approximation to the true transition matrix so that sensitivity coeffi-
cients computed from the time series solution may be used for statistical computation during
powered flight. Using only the vehicle state and the thrust polynomial coefficients as
elements of the si::e vector, the state transition matrix may be partitioned in this manner:

The partition ® contains terms of the form ox (t)/dxj(t ), the x, representing components
f vehicle position and velocity. Each augmented partition ®(®, &1} . . . contai-s
;artial derivatives relating the x, to the coefficients of the thrust polynomial. ‘1’”"',
fir example, has terms of the form 3x {t) '&x i (t)/dﬁ ox, (t)/3y The partition &9’
relates the x; to the start of burn so that its components are Bx (t)/a t,. During powered
flight, the last partition, (I’( ), relating the Xy to the end of burn is zero. At the com-

pletion of powered flight, its elements have the form 3x1(t)/3 tf.

Because of size limitations within the program, the number of biases to be updated
has been restricted to twenty. Each of the $(x) , k=0, 1,2, *°+, 5are 6 x 3 arrays,
whereas both ®(P) and () are 6 x 1 column vectors. The partition ® is 6 x 6. The null
matrix in equation (74) is 20 x 6, and the identity matrix I is 20 x 20.

5.6.2 THE TRANSITION MATRIX &(t, t,). Table 5-1 lists the elements of the
"conventional® state transition matrix by which the components of the vehicle state are re-
lated to their initial values. Since the three elements of each lower half-column are the
time derivatives of the three corresponding elements in the upper half-column, only eighteen
sets of coefficients need be computed. Typical coefficients are listed in table 5-2.

To compute the coefficients of table 5-2, take derivatives of equations (18),
paragraph 3.4.2, with respect to x (0), where

x,(0) = x,
x,(0) = ¥,
x3(0) = z, (15)
x,(0) = X,
x5(0) = ¥,
x5(0) =z,
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Then. . m-2
o ox %, %84y
m+2 - oy = d _— .+ dm-la-— + dm-k_z S .
9x,¢0) (m+1){m+2) ) ™ 9x, (0) X (0) x;(0)
. i k=0
n
+ :E: %4y 1 (76)
4 9x 4 (0)
=0

. m-2
Obgez .4 9, . :E: ; 3,4,
%, (m *1)<m 2y | 3x (0 ™1 3x,(0) m-k-2 35 (0)

k=0

17
ZE: b4 ax (0)

L=0

dc

m+2

BxJ(O) (m +1)(m +2)

+d Tt s
™ 9x,(0) m-1 3x,(0) m-k-2 9x  (0)

k=o

=
R

(178)
:E: 4 ox (0)}

In equations (76) through (78),

2O, (19)

—_— =3
ij(o) i3
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Table 5-2. .spical Coefficients for the State Transition Matrix, &(t, 0)
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
LI O44q %, 4g LLEPP %8 ,4q %4y
x, i 3, 3z, % ¥, 3z,
abl+2 abl+2 abl+2 abn+2 ab-+2 ab-+2
ox 9y, oz ox 9, 9z
9Cheg OCy4g 9Cy4a 9Cy4z 9Cy4g Cpeg
on Byo Bzo 3:0 3y° 9z,
vhere 81j is Kronecker's delta. In addition,
3 1 3 3 3
dy _3_ :E: 2.1, Dyg Dpdy g 90D, D (80)
%, 10D, Loa,m " To, @ o
fC
3 1 ) 3
Di—z ¥ LA bi'{+b ° o
= a .
3x, (0) Bx 0 - 3x, (0) g g0y ! 3x, (0)
d=o
J' . 30{ -l
‘ +e, (81)
Since
2
D Ro
(82)
d 1
[+] R 3
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then
and
? R,
3x1(0)
or
2 R,
3:1(0)
5'6.3
&(k) have dimensions 8 x 3.
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(k)

THE AUGMENTED STATE TRANSITION
A typical matrix

Yo 3xj(0)

2

9y,

+

MATRIX.

o

9z

o]

+ z
° 3xj(0)

8347 °

[ 3x x 3 |
da, 3 B, LR
9y 3y %y
da, 3 B, 3 7,
[} 3z oz
%a, 3 B, 3 7
% 3x ox
%a, 3 B, 3 v,
dy dy dy
9a, 3 B, 3 v,
oz 9z ?z
|2 ay 3 By 3 Yy_

b

(83)

(84)

(85)

(86)

The matrices of partial derivatives
of this type may be written as follows:

(87)




Since

the first column is given by

ox

9 ay

9 Ré -
9 ay -
r} Ro -,
I} ay

(m+2)
3a.+z_t

(m+2)
3b.+2 tim
da

k

(n+2)
%yeg t

Ma

9 ay

(m+2) 3..’2 t(m+1)

9 ay

(m+2) ab.+3 t (m+1)

I ay

(m+2) ac.+z g(m+1)

9 ay

STATISTICAL COMPUTATIONS

(88)

(89a)

(89b)

(89c)

(89d)

(89e)

(89f1)
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Exnanginns for the cecond and (hiid culumns are similar., As in the "cenventional®™ state
transition matrix, the three elements in the lower half-column are the time derivatives of

the corresponding elements in the upper half-column. For each value of k, only nine sets
of elements need be computed as shown in table 5-3.

Table 5-3. Coefficients for the Augmented
Transition Matrix, o(k)

Column 1 Column 2 Column 3
3am+2 aam+2 aam+2

3 ay 3 B, 3 Y,
%4y %y sy

aak 3 B, 3 Yy
3cm+2 3cm+2 acm+2

9 a, 9 ﬁk 0 Yk

Again starting with equations (18), paragraph 3.4.2, and performing the indicated
differentiations for the coefficients of the first row:

m
%84y 1 Ia z ) da, . Bdm_j—| -
= - — qa, —m a)
da, (m+1)(m+2)1 m, k H m-J da, J Eak_J
j=o
m
%8, _ - :E: aaj Bdm_j
= d t+ oa, (90bH)
9B, (m¥l)(m+2) m-1 238, 138,
i=o
m
aam+2 ) -u z aaj adm_J
= d + a. (90c¢)
3y, (m+l)(m+2) m-3 Dy, 53y,
3=o
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Let £, be a,. 8. 7, such that

§kl = a'k
&2 7 By (91)
& = %
Then
aao 3;1
= = 0
d¢gt gt
3;2 82 K 3&2 (92)
= —; =0, 1i71
d fkl 2 2 §k1
In addition,
n-}
'ad__j B -1 P 3d_-J_p anp
i (m-1) 0D P | eI RS Sy (93)
.-
2 fk ( o - ) fk P} fk
and
3 z 3
D *p-4 LLY) b ¢ 3y
3 i a’ﬂ a i + ap-’{ ~ + b{ + {
T S 9 &y’ LETS e %
(94)
Bcp_i 30{
tey Cp-L
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22
o
=0
? gki
BDO
=0 (95)
a‘vgki
‘aD1
=0
. gki
For the coefficients of the second row:
m
abmz } - abj adm_j
= d ——+ b (96a)
da, (m+1)(m +2) m-) Ba, I %,
J=o0
3 - 3 3
bm+2 - 1 Y z d bj . dm-j (960,
3B, (mrhmrzy ymk 138, 1 OB,
j=o
2 l 3 3
Pn+2 - cH by Ay
= dy_y 'y (96¢)
. (mF1)(m+2) Co28 a2
j=o
abo Bb1
" - =0 (97)
3 §k 9 .fk
Bbz 82,k 3b2

3 gkz 2 P) §k1
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Finally, for the third row, the coefficients are:

. ,
ac.,z = il z d aﬂ- +c ad--j (98a)
da, (m +1)(m+2) *J Ba, 1 %3a,
i=o
n
d¢
nt2 _ -l 3cj Bd._j X
3 " " dyy L4 ¢ (98h)
B ernmrn Li| 5t Ty
Cu+3 1 - dc, [
= 8. & -pzd._j t ey (98c)
37y (m +1)(m +2) ' ¥y, 7,
i®o .
3c° ) 3c1 Y
i i
9 &, 9 &,
(99)
Bcz _ Sz.k acz _
= ; =0, i ¥ 3.

2 §k3 2 D fki

The components of (P‘b) are obtained by translating timing errors at the start of
burn into errors in the initial conditions by

ax .
8 = — - &t =x_ ot (100)
(] 3% b o b
. -— ai —_
SxO—Bt—b' 8ty = x, 8ty. (101)
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Consequentlyv

(b)) = g . (102)

where ® is the matrix defined in table 5-1. A similar formulation holds true for ®(®),
except that the conditions at the end of burn are used for the initial state, and ¢ is com-
puted for the period following the thrust interval.

3-30




6.1 INTRODUCTION

6.1.1 OBSERVATION TYPES.

SECTION 6

COMPUTATION OF OBSERVABLES

observation types, of which 23 have been specified. These observations include:

a,
b.

c.

Azimuth, A

Elevation, E

Round-Trip Range, o'
Range-Rate, p

Hour Angle, h

Declination , &

4 Direction Cosine

m Direction Cosine

X - Angle

Y - Angle

Range Equivalent, At
Range-Rate Equivalent, At'
Vehicle Occulation Time, Tyoy

One-Way Doppler (DBN)

‘Two-Way Coherent Doppler (D6N)

Two-Way Non-Coherent Pseudo-Doppler (DSN)

Radar Altimeter Ranging, H

Stadiometric Ranging

Angle Between the Reference Body and Another Planet

Angle Between the Reference Body and a Star

Provision has been made in the Program for a total of 25

6-1
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u. Angle Between a Landmark and o Stap <

LOCAL
VERTI(CAL

VEHICLE
v. Angle Between Two Landmarks

w. Star Occulation Time, Tocs

NORTH
6.1.2 DEFINITIONS OF THE MEAS- "
UREMENT
6.1.2.1 Azimuth, A, and Eleva-

{

|

tion, E. Azimuth is measured easterly l
from station north, from 0 to 27. Eleva- l
tion is measured from the station's \ |
horizontal plane, positive upward, with |
|

|

|

N

®)
7

a range * 7/2. See figure 6-1. \

6.1.2.2 Round-Trip Range, o'. \
The round-trip range, o', is twice the \
distance from the station to the vehicle. \

§.l.2.3 Range-Rate, p. Range-rate, Figure 6-1
p, is the time derivative of the magnitude

of the vector from the station to the

vehicle,

Azimuth and Elevation

6.1.2. 4 Hour Angle, h, and Declination, &. Hour angle is the angle between the
station meridian and the projection on the true equator of the station-vehicle vector meas-
ured in the earth's true equatorial plane, as shown in figure 6-2. It is measured positive
westward from 0 to 2. Declination is the angle made with the true equatorial plane by the
station-to-vehicle vector. Declination is measured positive in the northerm hemisphere,
with limits t+ 7/2.

6.1.2.5 £ Direction Cosine, and m Direction Cosine. The 4 direction cosine,
as shown in figure 6-3, is the cosine of the angle between the station-vehicle vector and
the station's east vector, the latter vector being taken to lie in the station's horizontal
plane, normal to the local meridian, positive eastward in both the northern and southern
hemisphere. It has limits of £ 1.0 in the computation with no dimensions. The m direction
cosine is the cosine of the angle between the station-vehicle vector and the station's
north vector. The north vector is taken to lie in the station's horizontal plane and is
positive in the north direction in both the northern and southern hemispheres. It has
limits of + 1.0, with no dimensions.

6.1.2.6 X-Angle and Y-Angle. These measurements are shown in figure 6'4. The
Y-angle is the angle between the station-vehicle vector and the perpendicular projection
of this vector on the station's east-vertical plane. It is positive measured easterly,
negative westerly, and has limits of % 77/2. The X-angle is measured between the positive
vertical vector and the perpendicular projection of the station-vehicle vector in the sta-

tion's east-vertical plane. It is measured from the positive vertical and lies between
1t m.
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[
LOCAL VEHI
VERTICAL EHICLE
VEHICLE
STATION
MERIDIAN .
COSm
cos L NORTH
r
EAST
EQUATORIAL PLANE 3
Figure 6-2 Hour Angle and Figure 6-3 Direction Cosines {
Declination and =

6.1.2.7 Range and Range-Rate Time Equivalents, At, and At’. These measurements
are included since the raw data from typical tracking systems are the time between a trans-
mitted and 2 received signal for range, and the time to count a given number of Doppler
cycles for range rate. In most systems, these guantities are first converted to range and
range rate units. However, it may be found usefunl in some cases to use the raw data
equivalents.

6.1.2.8 Vehicle Occulation Time Tocv. Time is measured at the instant a space-
craft disappears or reappears behind the limb of the Moon as seen from an Earth-based track-
ing station.

6.1.2.9 One-¥Way Doppler. Ground station receives a signal not locked to a ground
interrogation.

6.1.2.10 Two-Way Coherent Doppler. Ground station receives & signal from the
transponder which is being interrogated by & ground transmitter radiating through the same
antenna utilized by the ground receiver.

6.1.2.11 Two-Way Non-Coherent Pseudo-Doppler. Ground station receives a signal
from the transponder which is being interrogated by a ground transmitter remotely located
with respect to the receiver. The transmitter and receiver reference frequencies are not
locked.

6.1.2.12 Radar Altimeter Ranging. The height above the reference body surface is
determined by measuring the round trip time of an electromagnetic signal reflected from the
surface.
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6.1.2.13 Stadiometriec Ranaina.  The larmest angle bobween the limbs of the

reference body is measured. The range to the body is deduced from knowledge of the body's
radius.

6.1.2.14 Angle Between the Reference Body and Another Planet. The angle
hetween the two vectors from vehicle to the reference body center and from vehicle to a
selected planet's center.

6.1.2.1% Angle Between the Reference Body and a Star. The angle between the
two vectors from vehicle to the center of a reference body and from vehicle to a selected
star.

6.1.2.16 Angle Between a Landmark and a Star. The angle between landmarks on
the Moon's or Earth's surface and a star.

6.1.2.17 Angle Between Two Landmarks. The angle between two landmarks, either
both on the Moon, or both on the Earth, or one on each body.

6.1.2.18 Star Occulation Time, Tocs' Star occulation time is measured at the

instant a selected star disappears or reappears behind the limb of a planet or the Moon as
seen from a space vehicle.

6.2 COMPUTATION OF OBSERVATIONS

6.2.1 INTRODUCTION. Observations are computed entirely from the relative position
and velocity of the spacecraft with respect to the point of observation. In most cases,
' only relative position is involved so

that computing the observables becomes

a problem in geometry. In the paragraphs

to follow, formulae are given for com-

puting observations from the ground and
LOCAL VERTICAL from a space vehicle in orbit. A sep-

arate paragraph is devoted to observations

from the Deep Space Net.

6.2.2 GROUND-BASED OBSERVATIONS

6.2.2.1 General. For ground-based
sensors, account must be taken of pre-
cession and nutation. Refraction correc-
tions should also be added to obtain the
most accurate values for the observa-
tions.

The station position vector in
a coordinate system rigidly attached to
the earth is

Figure 6-4 X- and Y-Angles
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] 0 Bu
Rge = [¥] |lelg 0 - 0 +| Av (1)
hg + € €2 c sin ¢, Aw

where

hc = geodetic saltitude,
¢g = geodetic latitude,
C = correction factor depending on ¢e.

€ = Earth's eccentricity,

Au,Av,Aw = geodetic net correction,

[G]s = transformation matrix from geodetic
to Greenwich systenm,

transfor-utidn from Greenwich to true
system of date.

62]

To transform R%E from the true coordinate system of date to the base date reference framse,
nutation and precession matrices must be premultiplied into the vector in that order:

Rgg = [A] [N] Rge (2)
where

{a} = precession matrix

[N] = nutation matrix.

If vehicle position is expressed with respect to some reference body other than
the Earth, the station-to-vehicle position is given by

Pg = Bt Rpy - Rgy (3)
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where

R = vehicle position with respect to
reference body

reference body position with respect
to Earth.

RPB

If Earth is the reference body, then,

In the computations to follow, most of the observables will be expressed in a
topocentric coordinate system, the unit vectors of this frame being given in the base date
system. Using station coordinates, the unit vectors are:

X = (1 0 ’ O]T : east vector
7 = [o 1 0]T north vector (5)
z= [0 0 1]7 up vector

In terms of the base date systems, these vectors are transformed to

ey = (1] x east vector

HB = [r] 7 north vector (6)
FB = (1] z up vector

(r] = [a] [N} [y] (6lg [al, (7)

al being a rotation matrix to account for misalignment between the station coordinates
.and the actual east-north-up system.
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6.2.2.2 Azimuth, A
A = Tan"! . o<ax<oen (8)

The quadrant of A is obtained from the signs of the numerator and denominator in equation
(8).

6.2.2.3 Elevation, E

= -1 pl.FB _
E = Tan - (9)

J(P. . -e_n)z + (pn . ;,”.)2

The quadrant of E is obtained from the signs of the numerator and denominator in equation
(9).

6.2.2.% Round-Trip Range, p’

6.2.2.5 Range-Rate, b

ihere vy =V, - , the vehicle velocity relative to the station in the base date system;
Vsg = [i'ﬂ [Nf ['eﬂSE' the station velocity in the base date system. [W,] Rgr = W X Rgp.
where “E is ‘the Earth's angular velocity vector.

6.2.2.6 Hour Angle, h

h=7vy+ (KG)B - (RA), 0 <h < 2m (12)
where
h = the hour angle of p‘ with respect to the
station; ‘
¥ = right ascension of Greenwich;

6-1
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(Kc)s = station loneitude
(RA) = right ascension of P

In equation (12),

Pg " Y
(RA) = Tan~! . 0 < (RA) < 2m. (13)

Pg * X

The quadrant of (RA) is obtained from the signs of the numerator and denominator in
equation (13).

6.2.2.7 Declination, &

pg ' Z
5 = Tan-1 |- 8 o Tcs < T (14)
_ — 2~ T 2
J(pB'X) + (pg * N2
6.2.2.8° 4 Direction Cosine
pB'EB .
g = . (15)
Pg :
6.2.2.9 m Direction Cosine
Ps'ﬁs
mEe—_— (16)
PB
dod 0 X-Angle
_ .1 |P8 " ©8 -
X = Tan -, -7 < X < . (17
Pg * Ng

The quadrant of X is obtained from the signs of the numerator and denominator in
equation (17).
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6-2-2." Y"Ang‘.

1 Pg * N m n
Y = Tan . -—< Y< o (18)
J — 2 2 2
(pg "€ + (pg - hp
6.2.2.12 Range Equivalent, At
At T et = ﬁ. (19)
c c
where ¢ is the velocity of light.
6.2.2.13 Range-Rate Equivalent, At’
P2 - Py
At' = ——— (20)

[

where Py and pq are the ranges evaluated at the beginning and at the end of the measurement,
respectively.

6.2.2.1% Yehicle Occultation Time. Unlike the foregoing observations, the calcula-
tion of occultation time entails iteratioms. As shown in figure 6-5, a ground station
observes the occultation of a spacecraft by the Moon. The iteration equation is

d(¢2 - ¢1) A
- + t)y, = 0 21
i
k
Toey = T1 * z (At), (22>
izo
o [Pe Rsw
d:z = cos _— (23)
Ps Rgy
¢, = sin~! :5 (24)
1 sSin Rs.

6-9
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Figure 6-5 Vehicle Occultation By The Moon

In the preceding expressions, P is the vector from the station to the vehicle, RSM the

vector from the station to the Moon's mass center, Rn the mean lunar radius, and TI the
initial time of the iterations. The limit k in equation (22) implies that k + 1 iterations
are needed to obtain the desired precision. The derivative is given by

d(by- ¢ _ 1 (or ~ Re Pg " P . Rsu* Rsu 5 Res t o+ Rew)
dt g Rgy sin ¢, | B "SM o tey? P Rgy TP " Rsu
Rp (Rgy * Rgw)
A (25)
Rs“3 cos ¢,
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f) being the vehicle velocity with respect to the station and RSM the velocity of the lunar
mass center relative to the station.

6.2.3 OBSERVATIONS FOR THE DEEP SPACE NET

6.2.3.1 introduction. Three typical DSN observations are given here. However, the
method for computing these observables can change depending upon the hardware in use for a
particular mission.

6.2.3.2 One-Way Doppler

6 |31 6 P
£, = 930.150 X 10° - | —| (960.10) X 10° | 1-—| cycles/second,

wiere O is the range rate measured from the station and c is the velocity of light.

6.2.3.3 Two~Way Coherent Doppler

6 96 Py + Pq
f2 = 0.1 X 10° + 30 -;; (FRQ) S cycles/second,

where (FRQ) is the reference frequency, and 'here p1 and pq are range-rates from the ith
and q'® stations, respectively. In general, p1 = Py

6.2.3.4 Two-Way Non-Coherent Pseudo-Doppler

6 96 | [31 (Py * P
f3 = 930.150 X 10° - 30| — — | (FRQ) | 1- cycles/second,
89 32 c

(28)

where the 1" and qth stations are paired in accordance with the following table:

3 O TR R
N W W
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6.2.4 ON-BOARD OBSERVATIONS

6.2.4.1 Radar Altimeter Ranging

H=2 Hp earth radii, (29)
where HR is the height above the reference planet.

6.2.4.2 Stadiometic Ranging

RR
(SR) = 2 sin™ ! |— radians, (30)
Rp
RR being the planet radius and RD the distance from the planet.

6.2.4.3 Angle Between Reference Body and Planet

Ay, = 1 |2 R di (31)
- COS - raadlans,
PP A R

where Z is the vehicle-planet vector, and R is the vehicle-reference body vector

6.2.4.4 Angle Between a Star and the Reference Body

IZ —
= -1 . ;
Apg cos Z n radians, (32)

where Z is the vehicle-planet vector, and E—is a unit vector indicating t4e star direction.
This direction is a function of right ascension, (RA), and declination, &:

n = [cos (RA) cos & sin (RA) cos & sin 8] (33)

6.2.4.5 Angle Between a Landmark and a Star

(d _
Asim cos! i;-- n radians, (34)

in which equation d is the vehicle-landmark vector, and n is the unit vector defined above.
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6.2.4.56 Angle Between Two Landmarks

A,, = cos! [_d, . -’-] radians (35)
LL d y 4

where d and y are the vectors from the vehicle to two different landmarks.

6.2.4.7 Star Occultation Time. As in vehicle occultation, star occultation time
is computed from a Newton-Raphson iteration:

d(¢, - &)
(¢, - <151)1 S v Bty; =0 (36)
i
k
Toes = Ty * Z (Bt (37)
i=o

where the geometry is defined by figure 6-6. The angles are computed from

[ R-n
¢2 = cos! ———-——J (38)
L R
= sinl | — (39)
¢, T

In the above expressions, R is the vector from the occulting body to the vehicle, n defines
the direction of the star being occulted, RR is the radius of the occulting body, TI is

the initial time of the iteration, and the limit k implies that & + 1 iterations are required
to obtain the desired precision. The derivative of equation (36) is given by

d(¢y - &) 1 _ R-m R-B PR ®R-B
= R-n +t — (40)
dt R sin ¢, R2 R3 sin ¢,

R being the vehicle velocity with respect to the mass center of the occulting body.
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6.3 MATRICES OF PARTIAL DERIVATIVES

6.3.1 INTRODUCTION. In the process
of statistical estimation, matrices are
employed which have as their elements
partial derivatives relating the state
vectors to the observations. In differen-
tial form,

Sy = M 8x (41)

in which 8; is the vector of observation
residuals and 8x is the state vector. M
has dimensions ixj, where 1 is the number
of observables and j is the number of
states.

Expressing the observation
matrix for a given observation type in
general form:

M = Mgy Mog Mog Moo Moc Mor Mop]  (42)

A

Figure 6-6 Star Occultation

Each submatrix denotes a set of partial derivatives with respect to different components

of the state vector.

a 1X6 matrix relating the observations to the position and velocity components

a 1X3 matrix relating the observations to errors in the ground station position

expressed in the Greenwich coordinate system. In this system, x is taken as
positive through the prime meridian, z is positive through the North Pole, and y

a 1X3 matrix relating the observations to the ground station orientation angles

ov*
of the vehicle.
Mos:
completes a right-handed system.
Mor' \ r
defined with respect to the local east, north and up vectors.
M

oo° @ 1X1 matrix relating the observations to themselves.
oc- 8 1X1 matrix relating the observations to the speed of light.
or- 8 1X1 matrix relating the observations to the observation time.

op- 8 1X6 matrix relating the observations to the propagation parameters.



6.3.2 PARTi &L DERIVATIVES FOR GROUND OBSERVATIONS

6.3.2.1 Azimuth, A
M,, = 1 [(e A -1 sin A) 0
= cos - sin
AV Pg cos E
M
— 8
o)
uAS - La{ om
“ns
oA 1 _ JA _ 1
M a2 Om P

OBSERVABLES

o o] (43a)

(43b)

(43¢

cos B cos y + tan E (sin A sin 8- cos A sin ¥ cos )

M, = - (sin vy + cos A tan E cos )

- sin A tan E

where 3 and y are station orientation angles.

"AA =1
MAC =0
Myp = Myy Vg t My D17 V.
MAP =0
6.3.2.2 Etevation, E
Mgy 2 :~ {EB sin A sin E + ﬁa(cos A sin E - cos E)]

. - “ak 2e ]| S
ES 130 onm M

S

IE -1 oE -1

— m | e——————————— e

M sin A sin E ' 2m cos A sin E

(43d)

(43e)
(43f1)
(43g)

(43h)

0 0 0] (44a)

(44b)

(44c)
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| cos A sin B + sin A sin ¥ cos 3
MER = sin A cos 7y

cos A

EE

EC

_ T
Mgr = Mgy Vg + Mgg [yl Vg

OE OE ©OE OJE OE

Mer | 35, 3p. SP. b, P

1 2 3 4 5

6.3.2.3 Round-Trip Range, o'

PB
=2|— 0 0
v
P Pg

=
[
o

2
Myrg = - — [(x - x9) v - vg) (2
Pg
Myrg = 0
! 1 u
Mo 1
_r
Mp'c "‘c—
- 1
Mprp T Moy Vg Mg [0 Vg
v _{ 9" 9" 3dp' ' ' 3’
lP - - — —— _ ——
P oP, P, 3P3 9P, aps AP,

-
1

BE]
BPG

- zs)1 [v]

J

(444d)

(44e)

(44f1)

(44g)

(44h)

(45a)

(45h)

(45¢)

(45d)

(45e)

(45f1)

(45g)



OBSERVABLES

6.3.2 PARTi AL DERIVATIVES FOR GROUND OBSERYATIONS
| 6.3.2.1 Azimuth, A
| Myy = ———— [(e cos A-n sina) o o0 o] (43a)
. Pg cOS E
Mis
_19A 9A
“AS = La& S; (43h)
L1
A 1 O°A _ 1 (1
_— e = T e C)
M4 m Om 4
cos B cos v + tan E (sin A sin 8- cos A sin 7y cos f)
"AR = - (sin vy + cos A tan E cos 7) (434d)
- sin A tan E
where 3 and y are station orientation angles.
"AA =1 (43e)
MAC =0 (43f1)
- T
Map = My Vg * Mg D17V (43g)
HAP =0 (43h)
6.3.2.2 Elevation, E
. - _
- MEV =1 - feB sin A sin E ¢+ nB(cos A sin E - cos E)] 0 0 0] (44a)
L
. — . M
. W L s (44b)
ES m3& m u
ns
Fel -1 OE -1
- = ;=T ——— (44c)
M sin A sin E O9m cos A sin E
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6.3.2.3

E

R

EE

EC

ET

EP

—_ _
cos A sin S + sin A sin » cos 3

T

sin A cos Y

cos A

T
Mgy Vg * Mgs [] Vgg

[B_E % 2E 3E OIE BE}
apl apz BP3 894 aps BPS

Round-Trip Range, o’

2

[apl 3?2 Bpa ap4 Bps ?,pﬁ

Ps
—_ 0 0 0
Pr

2
— [(x - xs) (y - ys) (z - zs)] [7}
PB

1T
p'v Vg t My [T Vg

’ap ’ ap ! ‘ap : 'Ap ! ‘ap ] ‘af_‘) ! J

(44d)

(44e)

(441)

(448)

(44h)

(45a)

(45b)

(45¢)

(45d)

(45e)

(451)

(458)
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6.3.2.5

One-Way Range-Rate, b

Hour Angle,

hv

[li’li’ % % W %

— T
p 1 .
— (x - Xg) -— (x tw y)
Pyl PB
b
—_— -y — y e, 1)
2
Py B
P z
— (- zg) =
0
1
p
C

M, V, + M. Ty
8 ups [y1T Vgq

2P, oP, OP

3

2 ¢ aps BPGJ

dh ©oh

OE 3;

(]

OBSERVABLES

(46a)

(46b)

(46¢)

(46d)

(46e)

(46f1)

(46g)

(47a)



ANALYTICAL BASIS

. e 4 - 2.
dh _ wwvo \VG DCU mova 113
9E sin2 A
(47b)
oh
S: = cot A + tan? h sin ¢G‘
[ -
M
5
w = dh dh £ (a10)
== — c
h8 3E ©OA
ER
M = oh o (47d)
hR JE A
[ MaR_
uhh =1 (47e)
Mo~ 0 (471)
_ T
Mpp = Mpy Vg + My D] Vg (47¢)
dh
MhP = SE MEP (47h)
Declination, &
% | E
M =l - (48a)
v [éE A
Mav

E

1 cos E sin ¢ - sin E cos A cos ¢61

OE cos &
q (48b)

3% _ sin A cos A cos A
9A cos &




f‘as L)
Mss = Las o7y

L o[ 2
% 13 oA

L AR

Mgy = Mgy Vg + Mg 1T gy

P}
Wsp =~ 35 YMr

6.3.2.7 4 Direction Cosine

Mgy
[éE M

g E sin A; 2.
3% - 8in sin A; A m
£ tan ¢, 4
=]_ 1 G T
I{s [ ;; B 1{] [G]s
[~ £ -sec ¢g
pnz Pr R
sec ¢ 4
+ PBT [')’] P RG _;
B Py
0 0

OBSERVABLES

(48c)

(48d)

(45e)

(48f1)

(48¢)

(48h)

(49a)

(49b)

0 (49c¢c)
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6.3.2.8

BASIS

m~o ~o™1 I—Mnn_l

w3 ],
M{{ =1
Mpc = 0

Mgy = Mgy Vg + Mg (V1T Vg

_
Mip = 35 Mer

m Direction Cosine

M
L 3n  m EV
LA 9E 9A
AV
o _ A sin E; o £
P> - cos A sin E; YOl
m tan ¢
U R S I 1
- 0
2
Py
m
t PBT [')’] 0 ——2
Pg
2 cos ¢G 2 sin ¢G
| Pe R pg R

(49d)

(49e)

(491)

(49¢g)

(49h)

(50a)

(50b)

(50c)



aC

aT

nP

Xs

xv

Wep
[:ag N

= My Vg + Mg [Y]T Vg

_om
" 3 e
M
_[ox EV
OE O9A
My
25 _ sin 2X 9X sin 2X
OF sin 2E OA 2 tan A
_[ox ox [ es
9E <A
| Mas_
w"
_faax o Yes
9E O9A
| Man
=1
=0

OBSERVABLES

(50d)

(50e)

(50f1)

(50g)

(50h)

(51a)

(51b)

{51c)

(514)

(51e)

(51f)
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6.3.2.10

Y-Angle

Yv

YS

YR

YY

YC

YT

YP

9Y
OE

oY
OE

Yv

aY
JE

M
3y EV
9A

M

AV

cos A sin E

cos Y

ES
oY

34
[ Mas |

ER
oY

OA

| Mar

Vg + Myg (T

EP

Vss

Ay _

oA

sin A cos E

cos Y

~~
[}
e

g

~

(51h)

(52a)

(52b)

(52¢)

(52d)

(52e)

(52f)

(52g)

(52h)




6.3.2.11 Range Equivalent, At
UAty = T Moy

1
WAeg = — Mo g

Magp = 0
MpeAe T 3
_ P
AL © 3
[
_2p
Aty © Y

1
M =— M
Ate ~ 7 Sp'p
6.3.2.12 Range-Rate Equivalent, At
Mag'y = Ky

21, (At")3

cN

where

o)
it

transsitted frequency;
c < velocity of light;

N = number of cycle counts.
MA¢r s = Kipg
Hreig T 0

MAgAe = 1

OBSERVABLES

(53a)

(53b)

(53¢c)

(53d)

(53e)

(53f1)

(53g)

(542)

(54b)

(54c¢)

(54d)

(54e)
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MAg r T

MAtp

6.3.2.18 Yehicle Occultation Time, T

S

M
T v .
oCcv |P.p

where i, j, and k are unit vectors in the base date coordinate system.
lp

6.3.3 PARTIAL DERIVATIVES FOR THE

6.3.3.1 One-~Way Doppler

of

M Z —M
flv ab
of
M T —
£,8 Bb
” _ of
fIR E;‘
' P

Me g, =1

= KM-

KMbT

pP

ocy

- 8
_|N X—'

[_I-P'i lp'}_ —I_P'; 00 0].

P
Pg

P X Rgy

lPB X Rsul

DEEP SPACE NET

_ 930 096 875

C

(541)

(548)

(54h)

(55a)

(55b)

(55¢)

(56a)

(56b)

(56¢)

(56d)

(56e€)




6.3.3.2

where £ stands for any of the elements in the state vector.

however,

Hence,

Let

o,
M, .= — X
f.c . pc
1 ap
_ 3f1
'flt =S Wy
P

Two-Way Coherent Doppler. By the chain rule,

3f2 sz

g T W T3, Y

3b1

or, May M
pi€ = Mbf B B
1 & %, %,
~ 201,
.fzf— e 'bié
_ 1
29f, g4.719 1011
K = 3 = - (FRQ)
Pi “
N, , = KNM:
£,V bV
'rzs = K'bls
N, . = KNM:
1,8 bR
M =1
fa21,

OBSERVABLES

(561)

(56¢g)

(56h)

(57a)

For closely spaced stations,

(57b)

(57¢)

(517d)

(57e)

(571)

(57g)

(57h)
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M =
f2P

6.3.3.3 Two-Way Non-Coherent

given for two-way coherent doppler,

Pseudo-Doppler.

(571)

(571)

(5Tk)

Using the same arguments as were

~ 23f3
= —— . 8a
Mf3§ 3. Mpif (58a)
Py
Let
20f
3 62.695 6292
K' = 3 - (FRQ) (58b)
Py ¢
Then,
M = K'M; (58¢)
1,V PV
M = K'M; (584d)
£,8 PyS
- fag, 58¢e)
Mf3R K Mpin (
M =1 (58f)
faf,
M = x'm; (58¢g)
£,C pyC
M = K'M: (58h)
1,7 PyT
M = K'M: (581)
£,4P DOyP
6.3.4 PARTIAL DERIVATIVES FOR ON-BOARD OBSERVATIONS
6.3.4.1 Introduction. For on-board observations, only matrices of the type MOV and

Moo will be used. These matrices relate the observations to vehicle position and velocity,

and to the observations themselves,

respectively.




6.3.4.2 Radar Altimeter Ranging, H

R
M =2{—0 0 O
w22 o o]

6.3.4.3 Stadiometric Ranging

Mgy ~ 1
' _ ZRR RD o o o
SRV X proey
.RD cCO0S —
2
Merer ~ !

6.3.4.4 Angle Between Two Planets

m- (n-m)d N - (A-mm
Ny v~ +
PP R sin(APP) Z sin(APP)

— _R
= -

NIN

M
App App

6.3.4.5 Angle Between a Star and a Planet's Center

M
ApgV

M =
Apshps

N |3

31

- (hem)m

sin (APS)

7 -
= ;? n = [ cos(RA) cos & sin(RA) cos d sind ]

OBSERVABLES

(59a)

(59b)

(60a)

(60b)

(61a)

(61b)

(61c)

(6228)

(62b)

(62c)
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6.3.4.6 Anale Betwean a2 | sndmarl and - si_-
MA = _P- 0 0 O (63a)
suu¥ | d
p=dxnxd (63b)
" -1 (63¢)
AsLuAsLu

6.3.4.7 Angle Between Two Landmarks

"

m - (n-m)n s n-(nmm

A,V o o (64a)
LL d sin ALL y sin ALL
- d -
m=— n :..y_ (64b)
d y
M = (64c)
ApLALL
6.3.4.7 Star Occultation Time, T°cs
My v~ =JL7['T,-T Tp-T Tp'k 0o o o) (65a)
0CSs lP'R

where 1, J, and k are unit vectors in the base date coordinate system.

lp =lexn (65b)

- R xn
= — (65¢)
In IR x|

N =1 (65d)
TocsTocs

6.4 AMBIGUITY RESOLUTION AND TIME CORRECTION

Prior to the introduction of data into the main Program, the available raw data
have been passed through edit and merge routines to time order all data from all sources
onto one input tape of standard format. After sorting and merging, there still remain two
adjustments to be made before the data are used in the Program:
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e The time which is assigned as the instant of an observation must take into account
the finite propagstion time from transmission to reception at each end of the link

o BSome measuring systems produce ambiguous data in the sense that the recorded value
differs from the real value by some uncertain multiple of a fixed quantity. The
ambiguity is not readily resolvable by the messuring device since a priori informa-
tion is needed.

The Program handles these two problems in the sequence shown in figure 6-7. The
raw data, already time-ordered on the data tape, are read in. Each data time can be asso-
ciated with up to four data types from any one station. As each time is read in, options
are available for: ’

rejecting data which are marked as being of poor quality
rejecting data of any type from any station
rejecting all data from any station or stations

rejecting any particular dats point which is not an integral multiple of an input
value. This allows selecting In, 2n, 3n, 4n, ... data of any time from any station.

The next raw data time is selected, and two-body theory is used to compute the
vehicle’s position at that time, from which the station-to-vehicle distance, Pg. 1s computed
and those data requiring ambiguity resolution have this correction made. The factor Pp/c
where c is the velocity of light, is subtracted from the time recorded for each measurement
time, translating back to the time the message was sent from the vehicle. The data, cor-
rected for time, are sent to the main Program, where they are used in the statistical esti-
mation process. The next data point is then brought in. Thus, the time correction and
ambiguity resolution are continually repeated, the precision increasing as the precision of
the orbit improves.
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'

READ DATA TAPE

l

EXERCISE DATA REJECTION OPTIONS

l

USE TWO-BODY THEORY TO COMPUTE
POSITION AT RAW DATA TIME

l

COMPUTE Prs

'

CORRECT RANGE AMBIGUITY, IF
ANY, AND SUBTRACT Prts/c FROM
RECORDING TIME

1

INTEGRATE TO TIME T-Pre/cC

l

PROCESS DATA

Figure 6-7 Data Selection and Correction




APPFNDIX A

COORDINATE SYSTEMS AND TRANSFORMATIONS

A.1  INTRODUCTION

This appendix describes the transformations of vehicle initial conditions and earth
and lunar oblateness attractions to the "base date" coordinate system used for trajectory
calculations in the Program. The base date system is determined by the direction of the
vernal equinox of 0?0 January 1 of the year suhsequent to the launch year. It has been
chosen as the basis for calculation because the planetary and solar coordinates are written,
on tapes, in that coordinate system. Rather than transform the tape information, the vehicle
initial conditions and the oblateness accelerations are transformed into the base date
system.

Vehicle initial conditions that are inserted in an earth-referenced system, such
as latitude, longitude,and altitude, are transformed first to a system determined by the
vernal equinox of date. This system (true earth) differs from the base date system by the
Earth’s nutation and precession. Transformation by the nutation matrix {N] and the preces-
sion matrix [A] then brings the initial conditions into the base date system.

The oblateness attraction of the Earth is calculated from a knowledge of the posi-
tion of the vehicle from the center of the Earth, expressed in the true earth system. Since
vehicle position, as calculated in the trajectory portion of the program is in base date
components, these components must be transformed via precession and nutation into the true
earth system. After computation, the oblateness attraction is transformed into the base
date system.

The oblateness attraction of the moon is calculated from the vehicle position with
respect to the moon's center and the lunar oblateness matrix.

The transformations described in this appendix are also employed in calculation
of the observations and the matrices of their partial derivatives with respect to the state
variables.

A.2 DEFINITION OF COORDINATE SYSTEMS

A. 2.1 GENERAL. The transformations described in this appendix all represent rigid
rotations of right-handed cartesian-coordinate systems. The following general coordinate
systems are employed: direction of vernal equinox at a specified date; moon-referenced axes;
geocentric; geodetic; selenocentric.
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A.2.2 VERNAL EQUINOX SYSTEMS

A'ZL?'| Mean Vernal Equinox of Base Date. This system employs unit vectors

Y and'fB, defined as follows:

XB - Unit vector directed towards the mean vernal equinox of bhase
date, i.e., intersectdon of ecliptic (mean plane of Earth’'s
motion ahbout the Sun) of base date and mean equatorial plane
of base date

Zp - Unit vector normal to mean equatorial plane of base date,
positive in northern hemisphere

Yg - Unit vector completing right-handed orthogonal system with
Xg and ZB

A.2.2.2 Mean Vernal Equinox of Date. This system employs unit vectors Tq,_y—q, and
Z,, defined for the date of interest in the same manner as unit vectors Xg: Ya and Zg
are defined for the base date (paragraph A.2.2.1).

5.2.2.3 True Yernal Equinox of Date. This system employs unit vectorsliﬁ,';é, and
Zp defined as follows:

E " Unit vector directed towards the true vernal equinox ot aate,
i.e., intersection of true equatorial plane and ecliptic plane
of date.

Eé - Unit vector normal to true equatorial plane, positive in northern
hemisphere

Yg - Unit vector completing right-handed orthogonal :ystem with

Xp and zg
A.2.3  MOON-REFERENCED AXES SYSTEM.  This system employs unit vectors X,, ¥, and
Z,. defined as follows:

Xy - Unit vector along the (A) principal axis of Moon, positive on
Earth side

ZM - Unit vector along the (C) principal axis of the Moon, positive
in the direction of rotation of Moon about its axis

;ﬁ - Unit vector along the (B) principal axis of Moon, completing
a right-handed system with X, and Z,,.




A.2.y

Xg

o o N

o

A.2.5

Ag

h,

G

Pc

GEOCENTRIC COORDINATE SYSTEM.
tThis system employs the following para-
meters (see figure A-1):

Unit vector in true equatorial
plane, directed toward inter-
section of Greenwich meridian
with equatorial plane

Unit vector normal to true
equatorial plane, positive
in northern hemisphere

Unit vector completing a right-
handed gythogonal system with

X and z,

Geocentric right ascension

Declination of line from
center of Earth to vehicle

Geocentric distance to
vehicle

Unit vector normal to vehicle's
local meridian, positive
eastward

Figure A-1.
Coordinate Systenm

COORDINATE SYSTENS

Geocentric

Unit vector in direction of geocentric radius to vehicle

Unit vector completing right-handed orthogonal system with Xé and ?}

GEODETIC COORDINATE SYSTEM.
(see figure A-2):

Unit vector normal to vehicle’'s local meridian,

This system employs the following parameters

positive eastward (A; = Ag)

Unit vector along that normal to the Earth's surface (considered as an ellipsoid)

which passes through the vehicle’s position

Unit vector completing right-handed orthogonal system with X& and H&

Geodetic longitude, positive eastward from Greenwich meridian

A-3
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@ - Geodetic latitude .(angle hetween equatorial plane and FG),

hG - Altitude above Earth's surface, measured along h..
v § : : - : 'L-‘ ‘. » N
A.2.6 SELENOCENTRIC COORDINATE SYSTEM. This system employs the following
coordinates (see figure A-3):

A, - Unit vector normal to local moon meridian, positive eastward

Fm - Unit vector from center of moon to vehicle .

;M - Unit vector completing right-handed pxjt';l_\oggnal system with -k-. and F.
)\.“ - Selenocentric longitude, measured in the ;I - 'y_l_plane (paragraph

."A.2.3) in the sense of positive rotation about z,

=

Selenocentric deci'ination Qf iine' from mooh center to vehicle .

R" - Selenocentric distance from moon center to vehicle

Figure A'-2. Geodetic Figure A-3. Selenocentric
Coordinate System Coordinate System
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.27 AZIMUTH ARD FLIGHT PATH ANGLES. The following vehicle flight parameters
are esployed (see figure A-4):

V - velocity of vehicle relative to the ;G, Y Zg coordinate system
Ag - Azimuth relative to Ag, eg. Dy system

Yg - Flight path angle relative to ic' ;G, FG system

Ag - Azimuth relative to Ay, g g System

vg - Flight path angle relative to KE ;l: FE system,

A.3 LIST OF TRANSFORMATIONS

Table A-1 lists the coordinate system transformation matrices use& ‘in the
Program. The coordinate systems under the From and To columns are defined in paraguph A. 2.
The mtrices used are given in paragraph A.4.

Table A-1. Transformation Matrices ‘ S
Matrix Symbol Matrix Name Acronym From To.
C ) Precession PREC X VaZy | % Vals
W | tation NoTA Yo VeZs | ¥oVoZa
(L] Libration LIBRA X, Yy 2, Xg ¥g Zp
bl Gamma Matrix GAMMAT X Yo Zg | X Ye Zg
(6] Geodetic to Greenwich GENMAT (A\g.%g) Ao By | X Yo Zo
Transformation
loma) Declination, Right GRNMAT (Ag.dig) AgogRe | Xp¥p2Z
e Ascension
. s Selenographic GENMAT (A, By) X‘-\E Y. 'y_. 2.

NOTE: Since all the transformation matrices listed in table A-1
are orthogonal, the inverse of any is simply its transpose.

A4 TRANSFORMATIONS

k«‘- { PRECESSION. The spin axis of the Earth is slowly precessing in inertial space
due to lunar and solar attractions on the terrestrial bulge. The plane of the Earth's
orbit about the Sun (ecliptic) moves slowly because of planetary attractions. As a result
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the intersection of the Earth’s mean
equator and the ecliptic (termed the ver-
nal equinox, ) undergoes a gradual rota-
tion in space. Therefore, the X
coordinate system is rotating w1gh respect
to the Xz, Yp. Z, system. Figure A-5
illustrates this rotation of the vernal
equinox with respect to its position at

;(
base date.
( // h The following form of the pre-
‘1::" cession transformation matrix is derived

from the forms in references 6, 20, and

/s

21.
The standard form of the pre-
A POSITIVE CW FROM NORTH cession matrix is a set of elements
Y POSITIVE UP FROM ¢ =)\ PLANE 2,,(T) that are functions of the time T

1n Julian centuries of 36525 days from
some standard time, usually 0?0 January
Figure A-4. Azimuth and 1, 1950, to the present epoch. This
Flight Path Angles transformation [a(T)] takes a vector from
the present-time system toc the January 1,
1950 system, i.e., through the small angle
that the earth has precessed in the time T.®*

It is desired to refer vectors to 0?0 January 1 of yecar subsequent to launch rather
than the 1950 date. Let

-3
H

B time in Julian centuries from 0?0 January 1, 1950 to 0?0 January 1,
of year after launch.

AT = time in Julian centuries from opo January 1, of year after launch,
to the present (trajectory) time.
T =T+ AT = time in Julian centuries from oMo January 1, 1950 to

trajectory time.

The desired transformation from the present system to the new base date is the product of
(a(T)], which transforms from the present date system to the 1950 date system, and [a(TB)]'l
which goes from the 1950 system to the base date system. Thus, the precession matrix,

[A], is given by

A -
[A] 2 [a(rp)] ™! [a(m)

-1
[a(Tgy] ~ [a(ry + AT)]

*For an alternative form of the precession matrix used in the Program, see the Programmer's
Manual.

A-6
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BASE DATE
ECLIPTIC

BASE DATE
MEAN EQUATOR

ECLIPTIC OF DATE

Xg e MEAN EQUATOR OF DATE

Figure A-5. Precession of Equinoxes
The quantity a(Tg + AT) can be written as a sum:

la(Ty + AT)] = [a(Tp)] + [Ba(AT, Tp)]

So that

. : 1 ‘
(Al = [acrp)] ~ {la(Tp)] + [Ba(rg, ATY]}

r

" : ~T 5
Al = [1] + [a(Tp)] [Aa(Ty, AT)]
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. P P B - . . -
iV @11 ®g2  ¥31 LCayy  Ba;, D8
(Al =1o 1 0|t 8., 8,, 834 Aa21 Aa22 Aa23
0 0 1 a4 8,5 843 Aasl Aa32 Aa33
Ty g AT

where the elements a;; are aij(TB)' the standard forms of the precession transformation
elements evaluated at TB'

The Aaij elements are obtained from their definition as follows:

A
ay(Ty + AT) = a;(Tp) ¥ AaiJ(AT, Tg)
Aaij(AT. Tg) = a;y(Tg ¥ ATy - ay4(Tp)
Expanding in a power series, using terms up to the third power,

Aaij(AT, '1“3)=a,01J + alij(TB +AT) + azij(TB + AT)2 + aaij(TB + Ar)3

a0 a1 a2 2 _ .3 3
alyy - atyy Tp - 2%y Ty a%yy T

= gl 2 2
al AT + a2;,(2Ty AT + AT?)+ a3, (3732 AT + 3Ty AT2 + ATI)

= 1 2 3
aly Ty + a iy T, + 3a i Tq
where
& A
7'1 = AT ,
Ty = (2 Tg AT + AT?),
and

A 1
= 2
T3 (TB AT + Ty AT2 + ; AT3)
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The ay and Aau elements are as follows:

and

= 1.0000000 - 0.000296970 Tnz - 0.000000130 Tna

1]

0.02234988 Ty + 0.00076700 Ta2 - 0.00000221 Tg3

H"

0.00971711 Ty - 0.00000207 Tz2 - 0.00000096 Ty

“8y2

= 1.0000000 - 0.00024976 Tz2 - 0.00000015 Tg3

il

-0.00010859 Tg2 - 0.000000030 Tp3
"3

873

= 1.0000000 - 0.00004721 Tz2 + 0.000000020 Ty3

= - 0.00029697 7, - 0.000000390 7,
= 0.02234988 7, + 0.00000676 7, - 0.00000663 74
= 0.00971711 T, - 0.00000207 7, - 0.00000288 7,

= -ba,,

= -0.00024976 7, - 0.000000450 7,
= -0.00010859 7, - 0.000000090 74

= -ba,q

= 4+
Aa23

= -0.00004721 79 * 0.000000060 73
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The cloments of L Grecessiun mairix are computed whenever needed with the

exception that if the matrix has been computed within the previous 1322 seconds, the pre-
vious value is used.

AN.2 NUTATION. Nutation is the periodic angular motion experienced by the Earth’s
spin axis. The Earth's mean equatorial plane is the mean plane of the oscillatory motinn
The oscillatory motion of the Xg, Yp. Zg System about its mean position, the Xo, Yo and z,
system, is described by the transformation between the two systems. The nutation matrix
[N] is as follows:

1 -8y cos €Q - &y sin €9
[N] =| 8y cos €q 1 -Se
8¢y sin €Q de 1

The geometric significance of &y, &¢, and €q 18 shown in figure A-6; refer to paragraph
A.4.6 for a discussion of these parameters.

The preceding expression for [N] matrix is an approximation, valid to about
0.5 x 10°8. The exact transformation is given in reference 6, pp. 67-68. More complete
discussions of nutation may be found in references 22 and 23.

The nutation terms are recomputed if needed and if the prior values are more
than 0.1 day old.

A. 4.3 LIBRATION. It is possible for mn orbiting satellite in a circular orbit to have
an angular rotation in a direction such that the satellite tends to keep a constant face to
its attractigg body. This condition can only exist in a truly circular orbit. 1In an eccen-
tric orbit, 8 (figure A-7) is not constant; hence, to an observer on the attracting body,
the satellite appears to oscillate or librate,

In the Program, the libration matrix, [L], is used to correct, when necessary, for
the Moon's libration this matrix glves the transformation from the Moon-referenced axes
system, XI y. w to the XE yE zE system axes as shown in figure A-8.

mn {12 ”613—
(L] = £2_1 £22 423
_{‘31 {32 &334
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ECLIPTIC
OF DATE

MEAN EQUATOR

OF DATE
i TRUE EQUATOR
s OF DATE
Figure A-6. Nutation Angles
where the '{'U are given in terms of the three angles O, A, 1i:
1:11 = cos 03’ cos A - sin 0D’ sin A cos i
/ﬁlz = - cos N sin A - sin Q' cos A cos i
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SATFILITF

513 sin )" sin i
£y, = sin Q' cos A
cos ()’ sin A cos i
£22 - sin )’ sin A
8
cos Q' cos A cos 1
£23 - cos ' sin i
£31 sin A sin i
ATTRACTING £, = cos A stn 1
Figure A-7. Libration Geometry £33 cos 1
The angles {}', A, i are obtained as follows:
sin ' = - sin(@Q + o + &) sin (I +p) csc i, -90° < Q'< + 90°
A=A+C -Q+ 7 - 0o, 0° < A £ 360°
cos 1 = cos(I + p) cos €p * sin € sin(I + p) cos(f) + o + 8y),
0° <1 < 90°
where
I=1°32.1'
sin A = - sin(Q + o + 8Y) esc i sin €g 0° < A < 360°
cos A = - cos(Q+ o+ 8Y) cos Q' - sin(d + o + &) sin Q' cos €
o= iy [-0°0302777 sin g+ 0°0102777 sin(g *+2w) -0°00305555 sin(2g *+ 2w)]
T =-07003333sin g+ 070163888 sing’ +0°005 sin 2w

©
!

= -070297222 cos g+ 070102777 cos(g +2w) -0200305555 cos(2g t+ 2w)
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z

MOON'S TRUE
EQUATOR

ECLIPTIC
OF DATE

Ye

EARTH'S TRUE
EQUATOR OF DATE

ASCENDING NODE OF MOON'S ASCENDING NODE OF MOON'S .
TRUE EQUATOR ON EARTH'S TRUE EQUATOR ON ECLIPTIC
TRUE EQUATOR.

Figure A-8. Libration Angles
and
54013 * 137064992 (d - dgp)
g’ = 3587009067 * 079856005 (d - d )

@ = 1967745632 * 071643586 (d - d.)

The libration formulas are taken from reference 6, and may be found also in
references 6 and 20. A description of €, 8¢, O, . and & is given in paragraph A.4.6.

The libration matrix is recomputed when needed, except that the prior values are
used if they were calculated less than (.01 day previously.
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Anu SamiA MATR I A The gamma malrix, {/], transtorms a vector from the X 'yG' Z;
system to the Xpo Ypr Zg system. From references 6 and 20, the expression for EY is

[ cos ¥ -sin y 0|
[¥] = |siny cos Y 0
0 0 1

where y = 7, + da degrees

100°07554260 + 09856473460 di

Yu =
+9° -13 2 + '
2°9015 x 10 (di) wet nodulo 360°
where
di = 1P [d - dso] (dimensionless)
t' = [3600 (t - tg + hrs) + 60H min + sec]
(3600 (t - tf + hrs) + 6OH min + sec |
- | 1P ¢ 4 ) J 6400
86400
_ 0.72921158558 x 10 % radians
w -

(1 +5.21x10713 q)) sec

IP [X] = integral part of [x]

da = 8y cos €q

A.4.5 GENERAL PURPOSE ORTHOGONAL TRANSFORMATION MATRICES. The [G], [DRA] and
[s] transformation matrices listed in table A-1 all have the same form:

-sin KG -sin ¢G cos KG cos ¢G cos KG—
(6] =] cos Aq -sin ¢g sin Ag cos ¢g sin Ag
0 cos ¢, sin ¢,
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where XG and ¢G are the geodetic longitude and latitude of the sub-vehicle point or of the
observation station.

For the [DRA] matrix, the right ascension Ag of the vehicle or station replaces
Ag: and the declination ¢g replaces &g

For the [S] matrix, the lunar longitude A‘ of the vehicle replaces )\G and lunar
latitude ¢. replaces ¢G.

The above transformations may be obtained by inspection of figures A-1 through A-3.

A.L.6 MUTATION AMND LIBRAT!ON PARAMETERS. The nutation and l1ibration matrices
use, among others, the following parameters: mean obliquity, €q (figure A-6); nutation in
obliquity, 8¢; mean longitude of descending node of the Moon’ 8 mean equator on the ecliptic,
Q: mean longitude of the Moon, { ; nutation in longitude, 5. The expression for these
parameters, given in references 6 and 20, are as follows:

_ [.] [-] -] '6 2 (-] ‘6 3
€q © 23.4457874 - 0.01301376T - 0.8855 x10°°T“ +0.503 x10°°T (1)
8¢ = Ae +de degrees (2)

-] -]
Ae = + 0.255833 x10-2 cos - 0.25 x 10~ % cos 20

o [~} -5
0. 1530555 x 10”3 cos 2L +0.61111 x 10> cos (3L - I

4

o
0°25 x10-5 cos (L +T) - 0. 194444 x 10°5 cos (2L - )

(-]
- 0.8333 x10 8 cos (2" - Y (3)
o
de = + 0.24444 x10"%cos2 { + 0.5 x10"5 cos (2¢ -0

+ 0730555 x10-5 cos (3 -T) -0.13888 x10- 5 cos (4 + )
o
- 078333 x10-8cos ({ -T'+ ) +0.8333 x10° 5 cos (€ -T' -0
o
+0.5555 x10°6 cos(3d oL +’) +0.5555 x10°%cos (3 - -0 (4)

(]
Q= 12? 1127902 - 0‘: 0529539222 (d -dgq,) +0.20795 x 10~ 2t

0
+0,2081 x10°212 +0.2 x10° 513 (5)

A-15



7~ <] ~ o
§ = 64.37545167 +13. 1763965268 (d - dgq) - 0. 1131575 x 1027
° 2m2 . n° 3
- 0.113015 x10°2T2 +0.19 x 10”57 (6)
3y = N) +dy (degrees) . (T
o
Ay = -[0.47895611 x10-2 +0, 47222 x 10°5T] s1n O
° 4 ° 3
+ 0.580550 x10" % s1n 200 -0.35333 x10°° sin 2L

o
+0.350 x10" 4 8in (L -T) -0, 13888 x 10" 4 sin (3L - I

[+ ]
+ 0.58333 x10°5 sin (L +) +0.3333 x10°5% sin (2L - )
-] o
+ 0.13888 x10°9 sin (2" -Q) +0.11111 x10°5 sin (2L - 2I"")
[+ ©
dy = -0.56666 x10 4 sin (2 ( ) +0.18888 x10"¥sin( ( -T")

-] o
+0.83333 x10" % sin2( { -I') -0.94444 x10°5stn (2 - O

] -]

0.7222 x10" 5 s1n (3 ([ -T') +0.41666 x10°3 stn ( [ - 2L +")
o 5 [ ° 5

+0.30555 x10°% sin (§ +T') +0.16666 x10 > stn2 ([ - L)

+0.16666 x 1075 sin ([ - +0) +0.16666 x10-5 sin ([ - -0

0.13888 x 105 sin (3@ - 2L +T"") -0. 1111 x10 5 stn (3 -I" - (9

where [, "', L are obtained from
_ ° ° 4 ° -3
[" = 282.08053028 +0.470684 x 10" (d - d50) +0.45525 x10°°T

[+
+ 0.4575 x10°3T2 +0,3 x 10-573 (10)

- ° ° ° ° 2 _¢o° - 403
" = 208.8439877 +0.1114040803(d - dg,) - 0.010334T - 0.010343T% - 0.12 x107%T
(11)

] o [
L = 280.08121009 +0.9856473354 (d - dg,) +0.302 x10-3T +0.302 x 10-3712 (12)




APPENDIX B

TRANSFORMATION FROM A POWER SERIES
TO A CHEBYSHEV POLYNOMIAL SERIES

B.1  INTRODUCTION

Lanczos (reference 24) has pointed out that for a specified tolerable error in a
given function, the Chebyshev polynomial expansion of the function converges more rapidly
than any other polynomial representation. Stated another way, for a given number of terms,
the Chebyshev expansion is the most accurate. In addition, a simple algorithm may be used to
compute the (k + 1)tll Chebyshev polynomial given the kt? and (k - 1)tll tevas. Consequently,
it is sometimes desirable to convert a function from a power series representation to a
Chebyshev expansion. A general procedure is described here for obtaining coefficients of
the Chebyshev expansion given the power series coefficients.

B.2 CHEBYSHEV POLYNOMIALS
Consider an arbitrary integrable function of bounded variation,

y = f(x) (n

which is defined over some interval -x, < x < x,. Let the power series expansion of equation
(1) be

f(x) =P/ +P/x+P x3 + . .. (2)

With appropriate normalization of the independent variable, equation (1) may equally well be
deveioped in a series of Chebyshev polynomisls,

K
£(t) =—22+K1T1(t) tKy(t) ..., (3)

where the 'tn(t) are functions of the normalized variable, t, or in a series of shifted
Chebyshev polynomials

Ko » *
£(t") =5t K/ T, (t') + KTy (t") + . . . . (4)
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! : . . . e - .
where the T, (t) are finectione of ¢he normalized varimble, U .

is obtained from equation (1) by normalizing x such that

ne series of equation (3)

—-=cos 8 =t (5)
Xy
For this normalized variable, the Kr coefficients are given by
2 1
K, =—J ()T, (t) (8)
kil
'l 1 - t2
Also, given that
To(t) =1
N
Tl(t) =t
the recursive formula for Tr+1 (t) is
Tr#l(t) = 2tTr(t) - Tr-l(t) (8)
Similarly, the series of equation (4) is obtained by defining a normalized variable, t',
having a range only from 0 to 1:
X _ 1+ cos 6 )
_—————— = 9
Xy 2
Given that
* 1 -
T0 (t")y =1
(10)
* ] [
Tx (t’y = 2t" - 1
3
the recursive formula for T 1(t') is
r+
* [ - s’ * fi * 1
Tr+1(t )y = 2(2t° - DT, (t7) - Tr_l(t ) (11)

It follows from the normalizing equations, (5) and (9),

the shifted and unshifted polynomials is

x

To(t) = T.(2t' - 1) = T (t")

that the relation between

(12)
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Consequently, the coefficients of the series of equations (3) and (4) are equal so that
K.' =K (13)

Evaluation of equation (6) therefore provides the coefficients for both series. It remains
now to determine the Kr coefficients given the Pj' coefficients of equation (2).

B.3 DETERMINATION OF THE CHEBYSHEV COEFFICIENTS

The series of equation (2) when rewritten in terms of the normalized variable t

X 2 X 2
f(t)=P°‘+P1’x.—x—.- + Pg xy (x. +.. .. (14)

becomes

Redefining the coefficients of the expansion such that
P, =P/ (xF (15)
equation il() becomes
f(t) =Py + Pyt + P2 4. . (16)

If the integrand of equation (6), f(t) Tr(t), is expanded in a power series in t, the
functional form of the typical integral for a given term in the series will be

1 n
t"dt
1= (17)

n J"—_
‘1 1_t2

Evaluating 1',

0, if n is odd
m, ifn=20 (18)
n (n-1)(n-3)(n-5)...3°1
n(n-2)(n-4)...4°2

7, if n is even

Multiplying In' by the 2/m factor of equation (6),
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rO. if n is ndd

2 . _ : -
—1,/71, = 2, if n 0 (19)
(n-1)(n-3)(n-5)...3°1.2, if n is even

n(n- 2)(n-4)...4°2
If equation (16) is rewritten as
a
f(t)y = 5 PjtJ, (20)
J=0
equation (6) becomes
@ 1
2 dt
Ke == = |p, J tir (t) ——— (21)
T y=0l T -1 |1 - ¢2

From equations (19) and (21), the first coefficient is

Co(20)Pyq (22)

=
i)
[ &)
~
+
N
n t4 8

1

where

_(24-1)(2q-3)(2g-5)...3"1
C,(2q) = (23)
(24)(2q- 2)(2a- 4)...4°2

2q is substituted for n in equation (19) since only even values of n yield non-zero values of
I

0
The remaining coefficients may be inferred by induction:
oo
K - 2 .
r 2 CrCO(2q)qu, if r is even (24)
q=1
@
K - (‘ [ s :
r 2 2 CrCO(zq)qu_l, if r is odd (25)
Q=1
where




(2q)(2q- 2)(2q- 4)- ..

CHEBYSEEV POLYNOMIALS

(2g-r+2), r even

T (2q+2)(2q+4)(2q+6)...

(29 - 2)(20- 4)(2q- 6)..

(2q+T)

.(2q-r+1), r odd

The summations of equations (22), (24), and (25) are carried out to a finite limit

commensurate with the desired accuracy.

c
r  (2q+2)(2¢+4)(2q+86)...

(2q+r-1)

(26)

2m

B-5/B-6



APPENDIX C
PROPAGATION CORRECTIONS

C.1  INTRODUCTION

The bending of radio waves passing through the troposphere and ionosphere limits
the inherent precision of modern electronic tracking systems. Therefore, some form of
correction for refractive effects is necessary to achieve the maximum accuracy of the satel-
lite tracking system.

Tropospheric error can be corrected either analytically or numerically. The
analytical method assumes the index of refraction decays exponentially as altitude increases.
The tropospheric errors for range and elevation, resulting from refraction, are therefore
solvable in closed form as a function of the elevation angle.

The numerical method does not assume a specific variation of index of refraction
with altitude; any model describing the variations can be used. The tropospheric errors
are determined by numerically integrating over the total propagation path, the index of re-
fraction at each integration point being determined by the assumed model.

Because of the complex nature of the ionosphere, it is very difficult to find a
simple model to use as a basis for an analytical solution to the ionospheric errors; there-
fore, a numerical approach is indicated. As a refinement, the refraction correction is made
dependent upon the predicted evaluation angle rather than the measured elevation angle.
Since the predicted angle is subject to error, a test is made on the variance of the pre-
dicted angle. If the variance is above a predetermined limit, an iteration is made to in-
clude the data point and thereby provide a better estimate of the elevation angle before
making the final correction. The refraction correction is then based upon the new elevation
angle, and the results of the iteration are used by the statistical filter. The Program
uses a mmerical approach for the correction of tropospheric errors to be compatible with
the numerical solution of the ionospheric model. As a result, integration over the tro-
pospheric and ionosphere may be performed by the same routine.

In addition to refractive bending, the problem of signal retardation which results
in range error, and the effect of refractive bending on range rate measurements are included
in the following analysis.

C.2 METHOD USED

C.2.1 GENERAL. The methas used to determine refraction corrections in both the
troposphere and the ionmosphere i. . simple one which was derived by S. Weisbrod (reference
25). In Weisbrod's method, vi.ere are no limitations on the shape of the index of refrac-
tion profile or angle of elevation. The following assumptions are made:
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a. The gradient of the indey nf rofraction v5rics only wilhh aliltuue, l.e., raalatly.

b. The index of refraction profile can be approximated by a number of linear segments,
the length of each segment being very small compared to the Earth's radius.

c.2.2 INDEX OF REFRACTION MODELS

€c.2.2.1 General. It is an almost impossible task to analyze completely the atmospheric
propagational effects from all possible conditions. Therefore, atmospheric models represen-
tative of average conditions are employed to simplify the computational problem. In the
models used, the following assumptions are made:

a. The troposphere extends to approximately 40 kilometers with refractivity decreasing
with height.

b. The region between the end of the troposphere and the beginning of the ionosphere
is assumed to have zero refractivity.

c. The ionosphere lies between a height hO (refer to paragraph C.2.2.3.1) and 2000
kilometers.

d. The refractivity is zero in the region beyond 2000 kilometers.

In general, the equations used to compute range and elevation errors are the same
for both the troposphere and the ionosphere. Refractivity, however, is computed differently
for each.

Computed solutions can only be as accurate as the models assumed. However, since
profiles of the index of refraction in the atmosphere (especially for the ionosphere) are
not precisely known under all conditions, a more exact solution is not warranted at this
time.

C.2.2.2 Tropospheric Model. In the tropospheric model, refractivity is assumed to
decay exponentially, with the ground index of refraction and the scale height as parameters.
The equation for the tropospheric model is as follows:

N =N, e M/H = (n _ 1) 108 (1)

where

No = 313 (refractivity at sea level)
h = height above the Earth

H = 7 kilometers (scale height)

n = index of refraction.
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For the tropospheric model, the refractive errors are considered to be independent
of signal frequency since the index of refraction is virtually independent of frequency up
to 30,000 wmegacycles.

€c.2.2.3 lonospheric Model

C.2.2.3.1 Ionospheric Parameters. In the ionospheric model, the index of refraction is
dependent upon more parameters than those considered for the tropospheric model. The
ionosphere consists of several belts of charged particles. The P layer is very much larger
than any other layer, and therefore contains a greater number of charged particles than the
other layers. The F layer is the one closest to the Earth's surface. It is subdivided into
the F1 and F2 layers. In the ionospheric model, the index of refraction is primarily de-
pendent upon the height, ho. of the base of the ionosphere's F2 layer, the maximum electron
density of the F2 layer, and the height of the maximum electron demsity of the F2 layer.

Both index of refraction and the height ho are dependent upon diurnal, solar
activity, seasonal, and geographical variations as well as other miscellaneous sporatic
variations. Unlike the tropospheric model, the refractive errors in the ionospheric model
are frequency dependent.

In constructing the model, the range of the signal frequency has been limited to
frequencies above 100 megacycles since this range of the spectrum both represents the situa-
tion of greatest interest and enables equation simplification.

C.2.2.3.2 Electron Density Profile. The relationship between the index of refraction (n)

the angular frequency of the incident signal (w), and the electron density in the ionosphere
(reference 25) is given by

n =11 - —— (2)

where
Pe = electron density per cubic meter
e = electron charge (1.6 X 107!9)
m = electron mass (9.08 X 10'31)
€ = permittivity of free space (8.854 X 10"2)

Using the first two terms of the binomial expansion as an approximation, the
equation for the index of refraction reduces to
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0

. -
n =1 - 40.3 — (3)
£2

where f = w/277. This equation is true for frequencies above tﬁe critical frequency, f

e’
which is defined as
fc = 8.97 pol/2 X 10”8 megacycles per second (4)
where Po is the maximum electron density per cubic meter.
From the definition of N of equation (1), equation (3) can be written as
pe
N=-4.03 — X 1079, (5)
f2

The model selected for electron density versus height consists of a parabolic
variation below the height of maximum electron density matched to a hyperbolic secant profile
above the maximum. The relationships are as follows:

pe = Py [1 - (1-0)2] 0<o <1

m
Pe = Po sech [ﬁ-(a -1)] o

v
-

(6)

where
h -h
U=
hm Yo
h = height above the Earth
h0 = height of the base of the F2 layer
h'I| = height of the maximum electron density in

the F2 layer
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The model has the following characteristics:

a. The model has three degrees of freedom (ho. h-. and po) which unidnely specify the
entire distribution. These parameters can be obtained from ionogram data.

b. The electron distribution is parsbolic below the maximum electron density height,
nearly parabolic immediately sbove the maximum, and expomential at great heights.

c. ‘The electron content of the distribution above the maximum electron density height
is three times that below it.

d. The entire electron demsity profile and its derivatives are continuous everywhere.

Figure C-1 is a plot of the ionosphere model normalized with respect to o and
1/2 (pe/po). The h,. h . and o, parameters refer to the ionosphere's F layer. Using this

Y

2 4 \

<
1
/
ol ‘__—______———‘/
(o] 0.1 0.2 p 0.3 04 05
uz( ./Po)

Figure C-1 Normalized 3-Parameter Model of Atmosphere
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model, the refractive effects of the D and E layers are not singled out, because they are
quite small in comparison with those due to the F layer and are approximately accounted for
by allowing the electron density at the bottom edge of the F layer to be zero.

c.2.3 Detailed Analysis

€.2.3.1) Computation of Ray Bending. Consider a ray (figure C-2) entering, at an
angle of 3, an infinitesimal layer of thickness dP. Sinee the curvature of the ray is equal
to the component of the refractive gradient normal to the ray divided by the index of
refraction,

1 dn
= = — cos (D]
n dP

LR

where K is the radius of curvature.

The length of the raitpath in the layer is

K dy = csc 2 d3 (8)
which, when combined with equation (7), gives

1 dn
dy = — — cot 3 dP. (9)
n dP

The dy's of all elementary layers are directly additive; therefore, considering
dy's due to bending between points Q and R, it follows that the contribution to the total
bending ¥, from a layer bounded by the heights Pj and Pk is

Yix © - — cot & dP. (10)

If the ray departs from the Earth's surface with an elevation angle of 80. then
from Snell's law for spherical stratifiction

n acos ¢ = nP cos 3 = constant (11)
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TANGENT AT Q

TANGENT AT R

CENTER OF RAY PATH

Figure C-2 Geometry of Bending Through an Infinitesimal Layer

where

index of refraction at the Earth's surface

a = Earth's radius

P=a+t+h
h = height above Earth
n = index of refraction at h

From equation (11),

n,6 s ) ny Pi—
cos 8 = P cos 00 all - cos ﬁi (12)
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2 Al &
n.a
0 nP
sin 8 = - cos? 8,
nP n a
. [+] )
2 1/2
n, P
i i} nP
= —— | - cos? B, (13)
nP ny Py
. 1/2
P 2 ‘
nP -|© - .
cot B = [ ] --cos? R cos 6
n_a »
[o]
3 1/2
> 2
nP .
= - cos? By|  cos By (14)
n; Py ’

where n, P, and 5 are the values of these parameters at h.

Equation (14) can be substituted into equation (10) to give the general equation
for refractive bending: . - :

Py
v = 1 dn cos 9 dpP
ik n dp \ 1/32
P
nP
! : |: :] - cos? 190
n a
0o
P
X
cos 3
= = %:— - dp (15)
n
P 1/2
3 P - 2
- cos? ,Bj
n; By

C-8
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Assume that

dn
a. 3 = - k, where k is a constant.

b. P -P <<.Pj '

Y
¢. The index of refration n is very nearly equal to unity.

k 3

On the basis of the assumptions and from figure C-2,

(Ny - Np) (Ny - N)
Kk =——— X 10°8 = ——— x 10°8
(Py - Py) (P - P
and
2
npP 2 (P - Pj)
= 1-<nj--n)1o" 1 + —
llj Pj Pj
Expanding equation (17) and using only the first two terms,
2 -
[ n,] 21+2(P-PJ) (1 -k Py
n; Py Py
and, substituting in equation (15)
k
= [sin2 B, + 2¢P -P,) (1 -k p,y/p, 1 "% ap
Y5k = k cos ﬁj sin ﬁj 2(P-Py) (1- 3)/Py
Py
k P, cos ﬂj

1/2
= ] - - -
T T, {[sin By + 2(Py -Py) (1 -k Py)/P]

(16)

(17)

(18)

(19)



ANALYTICAL BASIS

! v A /96N ae3 o—_Vve_ .
Brom aquations (12) and {13) &and Sacll's Law,

—— 2 —-1/2
n, P, | n, P : :
b I | S .
sin B, = —- || n = -z c‘osz",}S_J_
k "k} i I | ‘
R RN . B [ IR A 4
. ,cos«ﬁk‘-. P . 2 (Pk."‘-- Pj) (1 - kpj)
= ———1 sin? ,BJ + -
cos ﬂj i P,

and combining with ,equation (19)

k Py cos? ,Bj
Yk T Tk p

(tan' B, = tin B)).
3

From equations (14), (16), and (18)

k Py 2(Nj -N,) sec? S
= - 1076
1-k P, sec2,£3l"-sec2 ,5’J T
2(Ny -N) sec? Bs
) 2 2 P07,
_tan® B, - tan® B,
which, when substituted in equation (21), gives
- N - N
7jk ( J k) . -6
1 . 10
7 (tan, ,BJ tan f3,)
. ~(Ny - .Nk) . B
- = milliradians.

500 (tan B, + tan By)

(20)

(21)

(22)

(23)
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Total bending through the atmosphere is simply the sum of the individual contri-
butions; therefore,

E (Ny_y - Ny

= illiradians. 24
Y 500 (tan ﬁi-l + tan ﬁ‘) . * 26
i=]

It is frequently convenient to measure the refractive error in terms of the angle
subtended from the Earth's ceater. This quantity, €, is readily obtained from figure C-3.

€=y -(6-5 (25)
The quantity (6 - B) 1s found from Snell's Law and equations (12) and (17):

~

n, cos § = n cos B

cos B=cos [0 - (8 - B]

]

[1 + (N, - N) 10°6] cos 6

cos O = cos [B+ (8 - B]

{1 - (N, - M) 107€] cos 8 (26)

Expansion of equation (26) and the application of small angle approximations
results in

1/3)
-5 {1 - -2, - W 10-6 cot2 6] / } tan 6

1/2
{[1 + 2N, - M) 10°% cot? 8] 2 1} tan B (27)

For rays departing tangentially at heights above the troposphere, or for angles of
elevation greater than 100 milliradians at any height, the angles & and 8 are very nearly
equal and equation (27) reduces to

6 -5

14

N, - N) 106 cot @

e

(N, - N) 1078 cot B. (28)

C-11
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TANGENT TO RAY AT P

-— EARTH'S CENTER

Figure C-3 Geometry of Bending Through a Refractive Layer

€C.2.3.2 Computation of Errors in Principal Measurements

C.2.3.2.1 Elevation Angle Error. In most practical applications, the quantity of greatest
interest is the elevation angle error, §. This quantity is obtained from figure C-3 by the
use of the law of sines:

a cos 90 = P cos 6
a cos (6, - 8) = P cos [(6 + €) - 8] (29)

From equation (29),

sin € tan 6 + (1 - cos €)
tan § = -
sin € + cos € tan & - tan 60

C-12
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and when € is a small angle,

_ € tan 8 + €3/2
$ = . (30)
€ ttan 6 - tan 0°

Omitting 63/2 in the numerator of equation (30) results in an error of about five
percent in the troposphere for a tangentially departing ray. At higher angles of elevation
or greater heights, this error becomes negligible.

It should be noted that whereas angles ¥ and €, due to the passage of the ray
through various layers, are directly additive, the elevation angle errors are not. Thus,
to evaluate 5 at ionospheric heights or above, it is first necessary to combine the tropo-
spheric and the ionospheric €'s or §'s and then use equation (30). However, in nearly all
practical cases above the troposphere, 63/2 is very much less than € and € is very much less
than (tan 6 - tan 6,). Comsequently, the omission of €2/2 in the mmerator and € in the
denominator usually results in less than five percent error at heights in the F region.

Equation (30) can thus be approximated by

€ tan 6
§ ¥ an . (31)
tan 6 - tan 90

It is, therefore, justifiable to add directly the tropospheric and ionospheric
8's to obtain the total elevation angle error.

At astronomical distances all three quantities (¥, €, and 8) becowe numerically
equal,

C.2.3.2.2 Signal Retardation in a Constant Refractive Gradient Region. The signal retarda-
tion, dr, caused by a layer of thickness dP (figure C-2) is given hy

1 1
dr =] = - = | csc B dP
v ¢

-1lese f— = ———— + 1076 (32)

where

= gignal velocity in free space

(4]
|

= gignal velocity in the medium.

<
|

C-13
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The range propagation error, Ar. is eiven hy

Py

N X 10”6
Arik = c dr = — dP
sin S

P1 P
Substituting equation (14) into equation (16) and solving equation (23),

k
(dn/dp) o dn _ 2(Ny - N

tan S tan 8 (tan B; * tan Bi)
Py Py

- 10°5

(33)

(34)

The value of the integral for the case of a constant radial gradient is found to
be very nearly equal to the value of the integral obtained when taking the average value of
the denominator of the integral and treating it as a constant. The integral in equation (33)
can justifiably be treated in a similar manner for two reasons. One reason is that the sine
and tangent of small angles are very nearly the same, and the other reason is that the rate

of change of the sine is very slow at large angles.

To evaluate equation (33), set

P

k k

N X 10°8 2 x 1076
Ar]lk = —_—dpP = — N dP

tan 8 sin B, + sin By
Py Py
From equation (16),
Py Py
N dP = [N, - k(P - P] dP
P P

) 1
TNy By - Py - (N - N (B - Py

1
T (N PN (B - Py

(35)

(36)
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Substituting this value,

_ (N, - N) (P, - P))

Ar, =
ik sin B, + sin B,

. 10'6

To compute signal retardation for & double passage tlroagh the layer, the value

of equation (37) must be doubled. Therefore,

L FUIE S Y B TR YO
Ar = 2 X 10”3 meters,
ot gin B, , + sin B

In the ionosphere, the equation for range propagation error is

e, T = N +N.| by - b, )
_ 2 iy 1-1 T Nyl (hy - hy
OAr =1 +] — | IX 10 z meters
1, sin 61 y T sin 91
i=] -

where

fl = up frequency

e
it

2 down frequency

(38)

(39)

C.2.3.2.3 Doppler Error. Due to refractive bending, there is an error in the measurement
of the radial component of the target velocity. The equation describing this error can be

readily derived with the aid of figure C-4. Let

R = station location vector in inertial coordinates

' = position of satellite with respect to the Earth's

center in inertial coordinates

p = position of satellite with respect to the station

in inertial coordinates

p = position of satellite with respect to the station

in topocentric local moving coordinates

Q = Earth's rotation velocity vector-in inertial
coordinates

[A] = coordinate conversion transformation matrix
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Therefore,

-,
[
n

STATION

/

Pl

SATELLITE

=i

i

-1t

Figure C-4

system

T

Doppler Error Geometry

xT"+yJ +zk'

xT +YT 42K

Q X

R=f-0xR
p' = (Al (r - R

p' + [A] p’

unit vectors in the inertial coordinate system

unit vectors in the topocentric moving coordinate

(38)
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where X, Y and Z are the magnitudes of the x-, y-. and z- components of I'. Let

| - '
T - _P - T T )
| I = ol Ay, VA, 0" v A,k (39)
) - _ p' XR - - —
- = - ’ ' ’
k 0" X RI Ag, 17+ Ag, 1" + Agq Kk (40)
TahkxT=a, T +a,J +a,k . (41)
vhere A A2 Ays |
(a]l =|a,, Ay, Ags
(42)
| A3y Az Az

In the moving coordinate system, the relative velocity between staﬁion and vehicle is

described by
,3=be+;>’]-+;>2?. \ (43)
where
bx = velocity component along the local range vector
b’ = velocity component normal to the local range vector
in a plane determined by the transmitter beam and
the Earth's center
. bz = velocity component normal to 2 plane determined by
- . the transmitter beam and the Earth's center

From figure C-3, the measured value of range rate is along the apparent path or along the
tangent to the path at the satellite. Here,

V measured = p_ cos (Y -3) - by sin (y -8)

Px

V radial
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Therefore. the range rats errar Avr, iz

Av

r V radial - V measured

= bx - bx cos (y -8&) + by sin (y - %) (44)

|
and since (y - 8) is a very small angle, then

Avp = o (y - &) (45)

and is doubled for the round trip error.

In the ionosphere, the correction for range rate is modified as follows

2
f2
Av. =11 + ;r' Py (Y -8) (46)
1
C.3 COMPUTATION OF ERRORS IN SECONDARY ANGULAR MEASUREMENTS
NOTE: The elevation angle error & must be transformed into the
coordinate system of the secondary angular measurements in order
to determine the equivalent error in these systems.
c.3.1 COORDINATE CONVERSIONS. To convert from the azimuth angle ¢ and elevation

angle 0 system to other systems, see figures C-5 and C-6. From figure C-5, the following
relations hold for the x-y angles:

sin y = cos & cos ¢
cos y sin x = cos 6 sin ¢ 47)
cos y cos x = sin &
hence,
tan x = cot O sin ¢ (48)

where

x is the X- antenna angle

y is the Y- antenna angle

C-18
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ue

COSy COS X

< %o
ghs Qhﬁ
Figure C-5 Geometry for Converting to x-y and £-m System
From figure C-5, the following relations hold for the £-m direction cosine
system:
4 = cos O sin ¢
(49)
m = cos 8 cos ¢
where

4 is the measured £ direction cosine

m is the measured m direction cosine

C-19
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>\

8 NORMAL TO

/ EQUATORIAL PLANE
\ SIN 8 SIN A

+ COS 8 COS ¢ COS A

PLANE PARALLEL TO

EQUATORIAL PLANE AXIS

PARALLEL
TO POLAR
AXIS

COS d COS h=COSE COS¢ SINA-SINE COS A

Figure C-6 Geometry for Converting to Hour Angle - Declination Systenm
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‘From figure C-6, the following relations hold for the hour angle-declination system:

sin d = sin 6 sin A + cos & cos ¢ cos A

cos d sin h = cos & sin ¢ (50)

i

cos d cos h = cos 6 cos ¢ sin A - sin O cos A
hence,

sin ¢
cos ¢ sin A - tan 6 cos A

"

tan h (51)

where
d is the measured declination
h is the measured hour angle

A is the station location latitude

€.4.3.2 ERROR COMPONENTS. A small deviation in the elevation angle O will cause
a small deviation in the secondary angles. The magnitudes of the errors are determined by
differentiating the coordinate conversion expressions found in paragraph C.4.3.1 with
respect to the elevation angle.

For the x - y system

o9x _  sin ¢ csc? @ . sin ¢ cos? x
o6 sec? x sec? 8
(52)
dy _ cos ¢ sin 6
96 cos y
hence,
ox
Ax = — §
T %
(53)
dy
=3
Y.



hence,

ANALYTICAL BASIS

For the £ -m system

Ef = - sin 6 sin ¢
26
Om
455 = - sgin @ cos ¢
24
== 35
M b
om
Mmp = — §
28

For the hour angle - declination system

od
20

oh
96

cos O sin A - sin 6 cos ¢ cos A

cos d

1 sin ¢ cos A sec? 6

sec? h (cos ¢ sin A - tan 6 cos A\)?2

sin ¢ cos A cos? h

(cos 6 cos ¢ sin A - sin 6 cos A\)2

(54)

(55)

(56)

(57)
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